Investigation of salinization processes in a confined aquifer system; Application of sulfur and chlorine stable isotopes

Masaru Yamanaka

1. Department of Earth and Environmental Sciences, College of Humanities and Sciences, Nihon University

A combination of sulfur and chlorine stable isotopes (δ^{34}S and δ^{37}Cl) has been used to investigate salinization processes in a confined aquifer system in southwestern Nobi Plain (SWNP), central Japan. Deduced from the SO_4/Cl ratios and δ^{34}S values, a tongue of brackish confined groundwater ($\text{Cl}^- > 1000 \text{ mg/L}$), which extends from the shoreline of Ise Bay inland, mostly has two salinity sources; One is modern seawater, another is paleo seawater having no SO_4^{2-} due to sulfate reduction process. The Cl isotopic compositions are negatively correlated with paleo seawater Cl$^-$ concentrations, while they are not correlated with either total Cl$^-$ concentrations or δ^{34}S values. Furthermore, Cl$^-$ concentrations from modern seawater are positively correlated with δ^{37}Cl values. In addition to these observations, diffusion model calculations suggest that paleo seawater Cl$^-$ has diffused in argillaceous freshwater sediments whereas modern seawater Cl$^-$ has not been affected by preferential diffusion of Cl isotopes because it has migrated by advection via both an unconfined aquifer and non-pumping wells.

Keywords: paleo seawater, diffusion process, confined aquifer