Sharing Low Frequency Radio Emissions in the Virtual Observatory: Application for JUNO-Ground-Radio Observations Support. *Baptiste Cecconi¹, Renaud Savalle², Pierre Le Sidaner², Sébastien Hess³, Stéphane Erard¹, Philippe Zarka¹, Laurent Lamy¹, Andrée Coffre⁴, Laurent Denis⁴, Nicolas André⁵, Vincent Génot⁵, Julien Girard⁶, Jean-Mathias Griessmeier⁷, Tracy Clarke⁸, Marin Anderson⁹, Robert Ebert¹⁰, Charles Higgins¹¹, Jim Sky¹¹, James Thieman¹¹, Dave Typinski¹¹, Yasuhide Hobara¹², Kazumasa Imai¹³, William S Kurth¹⁴, Masafumi Imai¹⁴, Yasumasa Kasaba¹⁵, Atsushi Kumamoto¹⁵, Fuminori Tsuchiya¹⁵, Hiroaki Misawa¹⁵, Alexander Konovalenko¹⁶, Tomoyuki Nakajo¹⁷, Glenn S Orton¹⁸, Vladimir Ryabov¹⁹ 1.LESIA, Observatoire de Paris, CNRS, PSL Research University, Meudon, France, 2.DIO, Observatoire de Paris, CNRS, PSL Research University, Paris, France, 3.ONERA, Toulouse, France, 4.USN, Observatoire de Paris, CNRS, PSL Research University, Nançay, France, 5.IRAP, CNRS, Université Paul Sabatier, OMP, Toulouse, France, 6.Rhodes University, Cape Town, South Africa, 7.LPC2E, CNRS, Université d'Orléans, Orléans, France, 8.NRL, Washington DC, USA, 9.CalTech, California, USA, 10.SwRI, Texas, USA, 11.RadioJOVE Team, USA, 12.University of Electro-Communications, Tokyo, Japan, 13.National College of Technology Monobe, Nankoku, Japan, 14.University of Iowa, Iowa, USA, 15.Tohoku University, Sendai, Japan, 16.Institute of Radio Astronomy, Kharkov, Ukraine, 17.Fukui University of Technology, Fukui, Japan, 18.NASA-JPL, California, USA, 19.Future University, Hakodate, Japan In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. Data from all major decametric radio instruments will contribute: Nançay Decameter Array (France), LOFAR (France, Sweden, Poland), NenuFAR (France), URAN (Ukraine), LWA (USA), Iitate Radio Observatory (Japan), etc. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets. Keywords: Jupiter, Radio Astronomy, Virtual Observatory