Be-B systematics of refractory inclusions in CO and CH chondrites

Kohei Fukuda1, Wataru Fujiya2, Hajime Hiyagon1, Naoji Sugiura1, Naoto Takahata3, Yuji Sano3

1. Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 2. College of Science, Ibaraki University, 3. Atmosphere and Ocean Research Institute (AORI), University of Tokyo

Observations of solar-type Young Stellar Objects (YSOs) have shown enhanced and frequent X-ray flares accompanied by intense flux of accelerated particles [1]. The powerful X-ray activity around newborn stars suggests that intense irradiation from the proto-Sun has also occurred in the early solar nebula. Be-B systematics of refractory inclusions, the first solids in our solar system [2, 3], can potentially shed light on irradiation processes in the early solar system.

Previous studies have demonstrated that a short-lived radionuclide \(^{10}\)Be, which decays to \(^{10}\)B with a half-life of 1.4 Myr [4], was present in the early solar system with initial \(^{10}\)Be/\(^{9}\)Be ratios ranging from \(10^{-4}\) to \(10^{-2}\) [5-13]. However, most of the data come from refractory inclusions in CV3 chondrites. To further investigate the distribution of \(^{10}\)Be and irradiation conditions in the early solar system, we conducted Be-B isotopic measurements using a NanoSIMS 50 (at AORI, Univ. of Tokyo) on compact melilitite-rich CAIs in primitive chondrites, Y81020 (C03.05) and SaU290 (CH3).

The melilitite-rich CAI in Y81020 yields an isochron with the initial \(^{10}\)Be/\(^{9}\)Be ratio comparable to those of CV CAIs within uncertainties. The results suggest that CO CAIs have also experienced irradiation processes similar to CV CAIs. In contrast, a melilitite-rich CAI in SaU290 shows no resolvable excesses in \(^{10}\)B from the terrestrial value. Previous studies have demonstrated that hibonite-rich inclusions in CMs and FUN inclusions in CVs typically show lower \(^{10}\)Be/\(^{9}\)Be ratios than those of most normal CAIs [7, 9, 12, 13]. In addition, these inclusions are known to have low \(^{26}\)Al abundances, which is interpreted as their formation prior to the injection of \(^{26}\)Al into the solar system [e.g., 14]. These observations may suggest that FUN-like inclusions record irradiation history in the protosolar molecular cloud [9, 15] and/or heterogeneous distribution of \(^{10}\)Be in the early solar system [12, 13]. A substantial fraction of CH CAIs also has little \(^{26}\)Al [16], suggesting possible relevance to FUN-like inclusions. The low \(^{10}\)Be/\(^{9}\)Be ratio of the CH CAI observed in this study could, therefore, support the above hypothesis.

References

Keywords: early solar system, irradiation processes, Be-B isotopes

©2016. Japan Geoscience Union. All Right Reserved. - PPS12-P05 -