Estimated the apparent released energy of shallow low-frequency tremor occurred
Southeastern Kyusyu through frequency scanning at a single station

*Satoshi Katakami¹, Yusuke Yamashita⁴, Hiroshi Yakiwara², Hiroshi Shimizu³, Yoshihiro Ito⁴, Kazuaki
Ohta⁴

1.Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto university,
2.Nansei-toko Observatory for Earthquakes and Volcanoes, Faculty of Science, Kagoshima University,
3.Institute of Seismology and Volcanology, Faculty of Sciences, Kyushu University, 4.Disaster
Prevention Research Institute, Kyoto University

Slow earthquakes, such as tectonic tremors and very-low-frequency earthquake (VLFE), share a common
mechanism as shear slip on the plate interface and occur at both ends of updip and downdip of
coseismic slip areas. Shallow low-frequency tremors have been observed in the subduction zone off
southern Kyusyu [Yamashita et al., 2015].

Yamashita et al. (2015) have detected the shallow low-frequency tremors off southern Kyusyu from
ocean-bottom seismometer (OBS) data. Although the seismicity has been documented, the released
energy of these tremors has not been calculated. Here we calculate the released energy of tremor
sequences off southwestern Kyusyu with applying the frequency scanning analysis [Sit et al., 2012]
to OBS data.

Sit et al. (2012) proposed “the frequency scanning analysis” to detect tectonic tremors by
calculating ratios of the envelope waveforms through different bandpass filters of broadband data
at a single station in the Cascadia margin. We apply this method to the seismic data recorded at 12
short-period OBS stations deployed off southeastern Kyusyu, Japan. Three types of bandpass filters
with frequencies of 2–4 Hz, 10–20 Hz, and 0.5–1.0 Hz, corresponding to the predominant frequency
band of tectonic tremors, local earthquakes, and ocean noises, respectively, are adopted. When
ratio value is over the threshold, we define that the tremor signal is detected in the time window.

We estimate the apparent released energy as an approximation that is calculated from the squared
amplitude of the median of absolute amplitude within the time window.

We have successfully detected the some sequences with large radiated energy, which correspond
to the tremor events reported in Yamashita et al. (2015). In addition, we have also identified other
possible sequences of tremors, which have occurred at the further southward that has been reported
in Yamashita et al. (2015). The most largest released energy of tremors observed around the
southern part of the tremor swarm.