The Effective Stress Law at a Brittle-Plastic Transition: Analogue Experiments with Halite Gouge Layers

*Hiroyuki Noda¹, Miki Takahashi²

1.Japan Agency for Marine-Earth Science and Technology, 2.National Institute of Advanced Industrial Science and Technology

We investigated the effect of pore pressure $P_{\rm f}$ near the brittle-plastic transition (BPT) for a halite (NaCl) shear zone. Our series of precut friction experiments with a gas-medium apparatus with temperature $T \le 200\,^{\circ}\text{C}$, confining gas pressure $P_{\rm c} \le 150\,$ MPa, and $P_{\rm f} \le 140\,$ MPa revealed that a tanh connection between the brittle and plastic regimes works well even at elevated $P_{\rm f}$, with a coefficient for $P_{\rm f}$ in an effective stress law α being unity. Plastic deformation around the real contacts independent of the mean stress results in $\alpha=1$ regardless of the ratio of the real contact area $A_{\rm r}/A$. The functional dependency of the shear strength on the effective normal stress may deviate from a linear dependency with increasing $A_{\rm r}/A$. The present findings support a smooth transition in a hypothetical steady-state strength profile around a BPT, providing new insights in geologically obtained paleo-stress data in exhumed mylonitic shear zones.

Keywords: Effective stress law, Brittle-plastic transition, Friction experiment