Do hypohalous acids play important roles on sulfate formation in the Antarctic atmosphere？

＊石野咲子 ${ }^{1}$ ，服部祥平 ${ }^{1}$ ，Savarino Joel ${ }^{2}$ ，Chen Qianjie ${ }^{3}$ ，Shao jingyuan ${ }^{3,4}$ ，吉田 尚弘 ${ }^{1,5}$ ，Alexander Becky ${ }^{3}$
＊Sakiko Ishino ${ }^{1}$ ，Shohei Hattori ${ }^{1}$ ，Joel Savarino ${ }^{2}$ ，Qianjie Chen ${ }^{3}$ ，Jingyuan Shao ${ }^{3,4}$ ，Naohiro Yoshida ${ }^{1,5}$ ，Becky Alexander ${ }^{3}$

1．東京工業大学 物質理工学院，2．Institut des Geosciences de l＇Environnement，Universite Grenoble Alpes／CNRS， France，3．Department of Atmospheric Sciences，University of Washington，USA，4．Department of Atmospheric and Oceanic Sciences，School of Physics，Peking University，China，5．Earth－Life Science Institute，Tokyo Institute of Tehcnology，Japan
1．School of Materials and Chemical Technology，Tokyo Institute of Technology，Japan，2．Institut des Geosciences de I＇Environnement，Universite Grenoble Alpes／CNRS，France，3．Department of Atmospheric Sciences，University of Washington，USA，4．Department of Atmospheric and Oceanic Sciences，School of Physics，Peking University，China， 5．Earth－Life Science Institute，Tokyo Institute of Tehcnology，Japan
$\mathrm{Br}_{\mathrm{y}}\left(=\mathrm{HBr}+\mathrm{HOBr}+\mathrm{Br}_{2}+\mathrm{BrO}+\mathrm{BrNO}_{2}+\mathrm{BrNO}_{3}+\mathrm{Br}\right)$ is thought to play important roles in atmospheric chemistry in the Antarctic boundary layer through e．g．，ozone destruction by Br atoms and oxidation of dimethyl sulfide by $\mathrm{BrO}[1,2]$ ．A series of studies has indicated that a major source of Br_{y} in coastal Antarctica is blowing－snow which takes a part of brine on the sea ice surface to the atmosphere $[3,4]$ ． Therefore，it has been suggested that the importance of $B r_{y}$ is limited at Dumont d＇Urville（DDU； $66^{\circ} 40 ' S$ ， $140^{\circ} 01^{\prime} \mathrm{E}$ ），one of coastal Antarctic stations where the sea ice extent is relatively low compared to other coastal stations and highly exposed to the continental winds from the East Antarctic plateau［5］． Nevertheless，${ }^{17} \mathrm{O}$－excess（ $\Delta^{17} \mathrm{O} \fallingdotseq \delta{ }^{17} \mathrm{O}-0.52 \times \delta^{18} \mathrm{O}$ ）of atmospheric sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ at DDU showed relatively low values in spring compared to autumn，which indicates the possibility of a significant contribution of hypohalous acids $(\mathrm{HOBr}, \mathrm{HOCl})$ to aqueous $\mathrm{S}(\mathrm{IV})$ oxidation in the spring time［6］． To test this hypothesis，we simulate ${ }^{17} \mathrm{O}$ excess of $\mathrm{SO}_{4}{ }^{2-}$ using 3D chemical transport model（GEOS－Chem） in which reactions of $\mathrm{S}(\mathrm{IV})$ and hypohalous acids were recently implemented．We discuss the results by comparison of the observations at DDU with those from Concordia（ $75^{\circ} 06^{\prime} \mathrm{S}, 123^{\circ} 33^{\prime} \mathrm{E}$ ），the inland Antarctic station which is located more than $1,000 \mathrm{~km}$ away from the sea ice．

References：

［1］Saiz－Lopez et al．（2008），ACP，Vol．8，p．887－900，doi：10．5194／acp－8－887－2008
［2］Read et al．（2008），ACP，Vol．8，p．2985－2997，doi：10．5194／acp－8－2985－2008
［3］Yang et al．（2008），GRL，Vol．35，L16815，doi：10．1029／2008GL034536
［4］Lieb－Lappen and Obbard（2015），ACP，Vol．15，p7537－7545，doi：10．5194／acp－15－7537－2015
［5］Legrand et al．（2009），JGRA，Vo．114，D20，doi：10．1029／2008JD011667
［6］Ishino et al．（2017），ACP，Vol．17，p．3713－3727，doi：10．5194／acp－17－3713－2017

キーワード：南極，硫酸エアロゾル，反応性臭素，170異常
Keywords：Antarctica，Sulfate aerosols，Reactive bromine， 170 excess

