Overview and recent activities for shallow ice core project on a high-accumulation dome, southeast Greenland

*Iizuka Yoshinori¹, Sumito Matoba¹, Ryoto Furukawa¹, Takuto Ando¹, Takeshi Saito¹, Fahmida Parvin¹, Tomomi Amino¹, Mai Shibata¹, Moe Kadota¹, Osamu Seki¹, Shin Sugiyama¹, Ryu Uemura², Koji Fujita³, Asuka Tsuruta⁴, Shohei Hattori⁴, Shuji Fujita⁵, Hideaki Motoyama⁵, Naoko Nagatsuka⁵, Ikumi Öyabu⁵, Satoru Yamaguchi⁵, Satoshi Adachi⁶, Hiroshi Ohno⁷, Akira Hori⁷, Chihiro Miyamoto⁸, Yoshio Takahashi⁸, Chiaki Sasaki⁹, Toshitaka Suzuki⁹, Angel T. Bautista VII¹⁰¹¹, Hiroyuki Matsuzaki¹², Kazuho Horiuchi¹², Atsushi Miyamoto¹³, Kei Yoshimura¹⁴, Jesper Sjolte¹⁵, Masashi Niwano¹⁶, Naga Oshima¹⁶, Akihiro Hashimoto¹⁶, Tetsuhide Yamasaki¹⁷, Teruo Aoki¹⁸


On May 2015, we drilled a 90.45 m ice core in a high accumulation area of the southeastern Greenland Ice Sheet. The drilling site (SE-Dome; 67.18°N, 36.37°W, 3170 m a.s.l.) is located 185 km north of the town of Tasiilaq in southeastern Greenland [1]. Then we measure physical and chemical properties of the SE-Dome ice core. Based on the measurements, we show the general characteristics of the SE-Dome ice core. I) As for dating of the ice core [2], we propose a dating method based on matching the δ¹⁸O variations between ice-core records and records simulated by isotope-enabled climate models. We applied this method to a δ¹⁸O record from the SE-Dome ice core. The close similarity between the δ¹⁸O records from the ice core and models enables correlation and the production of a precise age scale, with an accuracy of a few months. II) As for physical property [3], the ice was –20.9 ºC at 20-m depth. The close-off density of 830 kg m⁻³ occurs at 83.4–86.8-m depth, which is about 20-m shallower than that obtained from empirical models, indicating that the firn with a higher density is softer than that from empirical result. We interpret that the high accumulation rate creates a high overburden pressure in a short time. The relative softness of the firn may arise from 1) there being not enough time to form bonds between grains as strong as those in a lower accumulation-rate area, and similarly, 2) the dislocation density in the firn being relatively high. III) As for chemical property [4], we measured the major ion fluxes, and obtained records of annual ion fluxes from 1957 to 2014. We find a high average NO₃⁻ flux (1.13 mmol m⁻² yr⁻¹) in the ice core, which suggests a negligible effect from post-depositional NO₃⁻ loss, indicating the SE-Dome region is an excellent location for reconstructing nitrate fluxes. For the non-sea-salt (nss) SO₄²⁻ and NH₄⁺ fluxes, a decreasing and increasing trend from 1970 to 2010, respectively, tracks well with the anthropogenic SO₂ and NH₃ emissions. In contrast, the decadal trend of NO₃⁻ flux differs from the decreasing trend of anthropogenic NOₓ emissions. We continue to investigate the paleoenvironment with multi proxies from several analyses (e.g. [5]) of the high-time-resolution and
chemicals-well-preserved ice core.

References

Keywords: ice core, Greenland, high accumulation