Attribution of iron in aerosols to combustion sources

*Akinori Ito¹, Stelios Myriokefalitakis², Maria Kanakidou³, Natalie Mahowald⁴, Rachel A. Scanza⁴, Douglas Hamilton⁴, Alex Baker⁵, Tim Jickells⁵, Manmohan Sarin⁶, Bikkina Srinivas⁷, Yuan Gao⁸, Rachel Shelley⁹, Clifton Buck¹⁰, William Landing⁹, Andrew Bowie¹¹, Morgane Perron¹¹, Thibaut Wagener¹², Cecile Guieu¹², Nicholas Meskhidze¹³, Matthew Johnson¹⁴, Yan Feng¹⁵, Robert Duce

1. Japan Agency for Marine-Earth Science and Technology, 2. Utrecht University, 3. Univ. of Crete, 4. Cornell Univ., 5. Univ. of East Anglia, 6. Physical Research Laboratory, 7. Stockholm Univ., 8. Rutgers Univ., 9. Florida State Univ., 10. Univ. of Georgia, 11. Univ. of Tasmania, 12. Laboratoire d'Océanographie de Villefranche, 13. North Carolina State Univ., 14. Ames Research Center, 15. Argonne National Laboratory, 16. Texas AM Univ.

Atmospheric deposition of iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. However, there are large uncertainties regarding the relative importance of different sources of Fe and effects of atmospheric processing on the bioavailability of the delivered Fe. Here, we compared Fe loading and solubility in aerosols from four atmospheric chemistry transport models and a number of field measurements. The model results suggest that combustion aerosols substantially contribute to labile Fe loading at high solubility in aerosols. Thus, assessments of dust-borne Fe fertilization of open oceans should include Fe-containing mineral aerosols affected by combustion sources.

Keywords: combustion aerosol, mineral aerosol, environmental changes