A Fuzzy Logic based Modified Drought Hazard Index for Comprehensive Assessment of Drought Hazard

*Vivek Gupta¹, Manoj Kumar Jain²

1. Research Scholar, Department of Hydrology, Indian Institute of Technology Roorkee, India, 2. Associate Professor, Department of Hydrology, Indian Institute of Technology Roorkee, India

Drought is one of the most costly natural hazards and occurs mostly in all parts of the world. Multivariate phenomena such as drought need a comprehensive assessment of hazard to reflect the various characteristics of drought. This study presents a modified drought hazard index (MDHI) based on fuzzy logic theory to overcome limitations of currently available hazard assessment indices. Ensemble-averaged projected precipitation and temperature data for RCP 8.5 from 7 RCM models namely, CCCma-CanESM2, CERFACS-CNRM-CM5, GFDL-ESM2M, MOHC-HadGEM2, MIROC-MIROC5, MPI-ESM-LR, and MPI-ESM-MR has been used to calculate standardized precipitation evapotranspiration index (SPEI) at 12-month scale to characterize the droughts. A comprehensive analysis of droughts for India has been performed using MDHI to map various high drought hazard regions over four different time periods i.e. 2021-2040, 2041-2060, 2061-2080 and 2081-2100 for the 21st century. Results of this study suggest an overall increase in the drought hazard over India with the progression of time. Odisha, Jharkhand, Parts of Bihar, West Bengal, Telangana, and Maharashtra are expected to have severe drought hazard in Period 3 (2061-2080). All Himalayan states in India including Northeastern states are expected to have severe drought hazard in Period 4 (2081-2100).

Keywords: Drought, Climate Change, India