Nitrate isotope distributions in the eastern Indian Ocean

*吉川 知里¹、眞壁 明子¹、松井 洋平¹、布浦 拓郎¹、大河内 直彦¹ *Chisato Yoshikawa¹, Akiko Makabe¹, Yohei Matsui¹, Takuro Nunoura¹, Naohiko Ohkouchi¹

1. 国立研究開発法人海洋研究開発機構

1. Japan Agency for Marine-Earth Science and Technology

Nitrogen isotopic composition of nitrate ($\delta^{15}N_{Nitrate}$) is widely used as a tracer of ocean-internal nitrogen cycling (consumption and regeneration) and ocean-external nitrogen inputs and losses (N₂-fixation; fixation of N₂ gas into bioavailable nitrogen such as ammonia by diazotrophs, and denitrification; microbial respiration using nitrate as an electron acceptor). When the phytoplankton assimilates nitrate, nitrogen isotopes are fractionated. A $\delta^{15}N_{\text{Nitrate}}$ value increases, in conjunction with nitrate depletion, due to an isotopic effect during nitrate assimilation by phytoplankton. When denitrification occurs in the water column, a $\delta^{15}N_{\text{Nitrate}}$ value extremely increases due to a strong isotopic effect. N₂-fixation produces fixed nitrogen with a δ^{15} N value of ~0‰, as nitrogen fixers take up N $_2$ gas with little isotopic effect. This fixed nitrogen with low δ^{15} N value is eventually converted into low- δ^{15} N_{Nitrate} through degradation of nitrogenous organic compounds called remineralization and subsequent nitrification. Those signatures of $\delta^{15}N_{\text{Nitrate}}$ in the euphotic zone are conserved in nitrogenous organic compounds and transfers to the sinking particles and deep-sea sediments. Here we determined $\delta^{15}N_{\text{Nitrate}}$ and $\delta^{18}O_{\text{Nitrate}}$ along 110°E in the eastern Indian Ocean during the cruise MR15-05 of R/V Mirai. The nitrate concentrations were below 0.1 μ M in the surface water of the whole area. The δ ¹⁵N_{Nitrate} values are expected to increase toward the surface, in conjunction with nitrate depletion. Furthermore, if nutrient uptake by phytoplankton and remineralization occur with Redfield proportions, and if external nitrogen inputs/output do not occur, then a N* value should be ~-2.9 μ M. However, in this study area, the $\delta^{15}N_{\text{Nitrate}}$ value decreased to 4.0% and the N* value increased up to $-1.3 \ \mu$ M toward the surface. These features suggest that the surface water of this study area is affected by N2-fixation. In the presentation, we will discuss the nitrogen cycle of the eastern Indian Ocean in more detail by using the $\delta^{18}O_{\text{Nitrate}}$ values.

キーワード:海洋窒素循環、窒素同位体比、東部インド洋 Keywords: Marine nitrogen cycle, Nitrogen isotopes, Eastern Indian Ocean