Seasonal and interannual variations in calcium carbonate saturation state in Tokyo Bay

*Michiyo Yamamoto-Kawai¹, Soichiro Ito¹

1. Tokyo University of Marine Science and Technology

Calcium carbonate saturation state (Ω) was observed at 2 stations in Tokyo Bay from April 2011 to December 2017, on a monthly basis. Ω was high in summer surface water and low in summer bottom water. Biological uptake of CO_2 and remineralization of organic matter was a main cause of the seasonal variation of Ω in surface and bottom waters, respectively. Freshwater input and warming/cooling also alters Ω in Tokyo Bay. Aragonite undersaturation was observed in bottom water in August 2013 and July 2014. These coincided with periods when hypoxic condisions were observed for about 2 weeks. Analysis of p CO_2 and AOU indicate that undersaturation was caused by regeneration of massive organic matter, including denitrification process. This study revealed seasonal and interannual variations in Ω and their controlling factors. It was also found that benthic organisms in Tokyo Bay has been already experiencing episodic aragonite undersaturation.

Keywords: Ocean Acidification, Hypoxia, Tokyo Bay