Fog retrieval on the Korean Peninsula Based on GOCI and Microwave Link

*KyungHun Lee¹, Byung Hyuk Kwon², Min-Seong Kim³, Park Sa Kim³, Sang Jin Kim¹, Won Gi Jo¹

1. Dept. of Earth Environmental System Sciences, Pukyong National University, Busan, Korea, 2. Major of Environmental and Atmospheric Sciences, Pukyong National University, Busan, Korea, 3. Geo-Sciences Institute, Pukyong National University, Busan, Korea

The sea fog is frequently observed over the Yellow Sea and south-eastern part of the Korean Peninsula from April to August. Although many studies have been carried out on the sea fog of the west coast where airport, port and bridges are situated, there is still a lack of useful information to identify the see fog. We tested an algorithm to detect the sea fog based on geostationary ocean color imager (GOCI) data. The differences of Rayleigh corrected reflectance between the bands classifies the fog and the lower stratus. The microwave (8 –11 μ m) for the communication networks is attenuated by water or vapour within low level atmosphere above sea level. The attenuation intensity can be estimated into the sea fog density or the rain rate. In general, the visibility is used to validate the sea fog detected by satellites, however it is difficult to find visibility meters installed over offshore region. Therefore, the inflow of the sea fog detected by the GOCI was verified not only by the visibility system but also by the five microwave link data. In the case of 100 cars crash on the Yeongjong Bridge under the visibility less than 1 km, the GOCI detection algorithm visualized correctly the inflowing deep sea fog which was confirmed by the attenuation of the microwave around the accident area.

Keywords: GOCI, sea fog, Microwave

Fog retrieval on the Korean Peninsula Based on GOCI and Microwave Link

KyungHun Lee¹, Byung Hyuk Kwon^{2*}, Min-Seong Kim³, Parksa Kim³, Sang Jin Kim¹, Won Gi Jo¹,

ų.

The sea fog is frequently observed over the Yellow Sea and south-eastern part of the Korean Peninsula from April to August. Although many studies have been carried out on the sea fog of the west coast where airport, port and bridges are situated, there is still a lack of useful information to identify the see fog. We tested an algorithm to detect the sea fog based on geostationary ocean color imager (GOCI) data. The differences of Rayleigh corrected reflectance between the bands classifies the fog and the lower stratus. The microwave (8 – 11 µm) for the communication networks is attenuated by water or vapour within low level atmosphere above sea level. The attenuation intensity can be estimated into the sea fog density or the rain rate. In general, the visibility is used to validate the sea fog detected by satellites, however it is difficult to find visibility meters installed over offshore region. Therefore, the inflow of the sea fog detected by the GOCI was verified not only by the visibility system but also by the five microwave link data. In the case of 100 cars crash on the Yeongiong Bridge under the visibility less than 1 km, the GOCI detection algorithm visualized correctly the inflowing deep sea fog which was confirmed by the attenuation of the microwave around the accident area.

¹Dept. of Earth Environmental System Sciences, Pukyong National University, Busan, Korea

²Major of Environmental and Atmospheric Sciences, Pukyong National University, Busan, Korea 4

³ Geo-Sciences Institute, Pukyong National University, Busan, Korea