[EJ] Evening Poster | A (Atmospheric and Hydrospheric Sciences) | A-AS Atmospheric Sciences, Meteorology & Atmospheric Environment ## [A-AS06]Atmospheric Chemistry convener:Yoko Iwamoto(Graduate School of Biosphere Science, Hiroshima University), Tomoki Nakayama(Graduate School of Fisheries and Environmental Sciences, Nagasaki University), Sakae Toyoda(東京工業大学物質理工学院, 共同), Nawo Eguchi(Kyushu University) Wed. May 23, 2018 5:15 PM - 6:30 PM Poster Hall (International Exhibition Hall7, Makuhari Messe) This session provides a forum for the presentation of the broad spectrum of tropospheric and stratospheric chemistry, including various research topics (e.g., dynamical processes, air quality and climate), approaches (modeling, field measurements, remote sensing, and laboratory studies), and species (gas and aerosol). This session also provides an opportunity for discussing possible future collaboration with other research fields relevant to atmospheric chemistry. ## [AAS06-P05]Continuous measurements of atmospheric O₂ and CO₂ at Tokyo *Yu Hoshina¹, Yasunori Tohjima¹, Yukio Terao¹, Keiichi Katsumata¹, Mai Ohuchi¹, Toshinobu Machida¹ (1.National Institute for Environmental Studies) High-precision measurements of atmospheric carbon dioxide (CO_2) in megacities are useful to validate the inventories of the fossil fuel-derived CO_2 emissions. In addition, recent studies suggest that combination of the atmospheric oxygen (O_2) and CO_2 measurements have potential for disaggregate the emissions of CO_2 into biosphere and fossil fuel combustions, which are coal, liquid fuel and natural gas. Since the exchange ratios between O_2 and CO_2 (− $\mathrm{O}_2/\mathrm{CO}_2$) are difference values for fossil fuel burning (1.17 for coal, 1.44 for liquid fuel and 1.95 for natural gas) and biotic process (1.0) due to depending on the elemental compositions. For a better understanding of the seasonal and long-term changes in CO_2 emission and contribution from fuels in the megacity, we started a continuous observation of atmospheric O_2 and CO_2 concentration at Tokyo Skytree in February 2017. The observed CO_2 showed not only a seasonal variation but also short-term variations with amplitudes of more than several tens ppm, which were mirrored by the O_2 variations. The monthly averages of the − O_2/CO_2 ratios for the short-term variations, ranging from 1.35 to 1.63, were low in summer–autumn and high in winter. Since the short-term variations unclear correspond to the diurnal cycles, these variations may be attributed to the synoptic scale mixing of air. Examining the relation between CO_2 concentration and wind direction, we found that the high CO_2 concentration events with durations of several hours to few days were often observed when southwest wind blew. It should be noted that the − O_2/CO_2 ratio of such high CO_2 event tended to be high. This result seems to suggest that there are strong CO_2 sources with relatively high − O_2/CO_2 ratio, for example natural gas-fired plants, to the southwest of Tokyo Skytree.