[EE] Evening Poster | P (Space and Planetary Sciences) | P-EM Solar-Terrestrial Sciences, Space Electromagnetism & Space Environment

[P-EM12]Space Weather, Space Climate, and VarSITI

convener:Ryuho Kataoka(National Institute of Polar Research), Antti A Pulkkinen (NASA Goddard Space Flight Center), Kanya Kusano(名古屋大学宇宙地球環境研究所, 共同), Kazuo Shiokawa(Institute for Space-Earth Environmental Research, Nagoya University)

Thu. May 24, 2018 5:15 PM - 6:30 PM Poster Hall (International Exhibition Hall7, Makuhari Messe) Past, Present, and Future of Solar-Terrestrial Environment is the keynote of this session. We share the latest scientific papers to understand how the solar-terrestrial environment changes in various time scales, and discuss the necessary international collaboration projects associated with VarSITI. More specifically, welcomed papers include space climate studies using tree rings and ice cores; cutting-edge observational and modeling studies of geospace, heliosphere and the sun; simulation and statistical studies to predict the future space weather and space climate.

[PEM12-P08]Facilitating Advancements in Space Weather Data Availability Through a Space Weather Testbed and Data Portal

*Christopher K Pankratz¹, Thomas E Berger², Thomas Baltzer¹, James Craft¹, Fernando Sanchez¹, Daniel N Baker¹, Allison Jaynes³ (1.Laboratory for Atmospheric and Space Physics (LASP), University of Colorado, Boulder, Colorado, USA, 2.University of Colorado, Boulder, Colorado, USA, 3.University of Iowa) Keywords:Space Weather, Informatics, Data Management, Modeling, Data Access, Interoperability

Society has grown reliant on complex and highly interconnected technological systems, which makes us increasingly vulnerable to the effects of space weather events. An extreme space weather event today could conceivably impact many of the crucial systems we rely on, including disrupting operating earth-orbiting satellites, potential collapse of electrical grids, and impairing navigation, communication, and remote sensing capabilities. Thus, it is imperative that the scientific community address the question of just how severe events might become and to ensure stakeholders have access to the essential data needed for research and decision making. Stakeholders include policy makers and public safety officials who need to be informed by the facts on what might happen during extreme conditions. This requires essentially extremely timely up-to-the-minute alerts, warnings, and also forecasts of severe space weather events, which in turn demands measurements, models, and associated data products to be available via the most effective data discovery and access methods possible.

Similarly, advancement in the fundamental scientific understanding of space weather processes is also vital, requiring that researchers have convenient and effective access to a wide variety of data sets and models from multiple sources. The space weather research community, as with many scientific communities, must access data from dispersed and often uncoordinated data repositories to acquire the data necessary for the analysis and modeling efforts that advance our understanding of solar influences and space physics on the Earth's environment. The University of Colorado (CU) is a leading institution in both producing data products and advancing the state of scientific understanding of space weather processes, is well positioned to address many of these issues. CU is inaugurating a dedicated Space Weather Technology, Research, and Education Center (SWx TREC) that will serve many of these needs, including implementation of an interoperable data portal intended to more effectively serve the needs of the Space Weather research community, as well as facilitating the advancement of models into

production/operational use. In this poster, we will outline the motivating factors for effective space weather data access and present plans and methods for meeting model testing/incubation needs, as well as the data management and access needs of the disparate communities who require space weather data and information.