First ever experimental proof of a clear and strong dependence of the standard phase scintillation index (\(\sigma_\phi \)) derived using Global Positioning System (GPS) measurements on the ionospheric plasma flow around the noon sector of polar ionosphere is presented. \(\sigma_\phi \) shows a strong linear dependence on the plasma drift speed measured by the SuperDARN radars whereas the amplitude scintillation index (\(S_4 \)) does not. This observed dependence can be explained as a consequence of Fresnel frequency dependence of the relative drift and the used constant cut-off frequency (0.1 Hz) to detrend the data for obtaining standard \(\sigma_\phi \). The lack of dependence of \(S_4 \) on the drift speed possibly eliminates the plasma instability mechanism(s) involved as a cause of the dependence. These observations further confirm that the standard phase scintillation index is much more sensitive to plasma flow, therefore, utmost care must be taken when identifying phase scintillation (diffractive phase variations) from refractive (deterministic) phase variations, especially in the polar region where the ionospheric plasma drift is much larger than in equatorial and mid-latitude regions.