[P-PS01]Outer Solar System Exploration Today, and Tomorrow
Convener: Jun Kimura (Osaka University), Yasumasa Kasaba (Dep. Geophysics Graduate School of Science, Tohoku University), Steven Vance (Jet Propulsion Laboratory, Caltech, 共同), Kunio M. Sayanagi (Hampton University)

Mon. May 21, 2018 5:15 PM - 6:30 PM Poster Hall (International Exhibition Hall7, Makuhari Messe)

The giant planets provide many keys to understanding planetary processes. They play an important role in shaping our solar system, and the physical and chemical processes they harbor also provide a unique opportunity to study the phenomena relevant for studying Earth and other planets, including exoplanetary systems. In this session, we discuss a wide range of topics encompassing the giant planets and their moons, including their origins, interiors, atmospheres, compositions, surface features, and electromagnetic fields. To advocate for current and future outer planets exploration (Cassini, Juno, New Horizons, JUICE, and beyond), we also call for discussions on future missions to explore giant planet systems, including how to develop better international cooperation. Discussion in this latter category will include progress in developing a solar sail mission concept for observing the Jupiter system and its trojan asteroids.

[PPS01-P07]Small Next-generation Atmospheric Probe (SNAP) Concept for In-Situ Atmospheric Exploration of Uranus and/or Neptune

*Sayanagi M. Kunio¹, Robert A. Dillman², David H. Atkinson³, Jing Li⁸, Sarag Saikia⁴, Amy A. Simon⁵, Thomas R. Spilker⁶, Michael H. Wong⁷, Drew Hope⁶, Archit Arora⁴, Steven Bowen², Angela Bowes³, David Goggin², Steven Horan², Samantha Infeld², John P. Lecky², Timothy Marvel², Ryan McCabe², Anish Parikh², David Peterson², Stephanie Primeaux², Alexander Scammell⁶, Kevin Somervill², Lawrence Taylor², Christopher Thames², Hernani Tosoc², Loc Tran² (1. Hampton University, 2. NASA Langley Research Center, 3. Jet Propulsion Laboratory, California Institute of Technology, 4. Purdue University, 5. NASA Goddard Space Flight Center, 6. Planetary Mission Architect, 7. University of California, Berkeley, 8. NASA Ames Research Center)

Keywords: Uranus, Neptune, Atmosphere, Planetary Exploration

We present a concept for a small, atmospheric probe that could be flexibly added to future missions that orbit or fly-by a giant planet as a secondary payload, which we call the Small Next-generation Atmospheric Probe (SNAP). SNAP’s main scientific objectives are to determine the vertical distribution of clouds and cloud-forming chemical species, thermal stratification, and wind speed as a function of depth. As a case study, we present the advantages, cost and risk of adding SNAP to the future Uranus Orbiter and Probe flagship mission; in combination with the mission’s main probe, SNAP would perform atmospheric in-situ measurements at a second location, and thus enable and enhance the scientific objectives recommended by the 2013 Planetary Science Decadal Survey and the 2014 NASA Science Plan to determine atmospheric spatial variabilities.

We envision that the science objectives can be achieved with a 30-kg entry probe ~0.5m in diameter (less than half the size of the Galileo probe) that reaches 5-bar pressure-altitude and returns data to Earth via the carrier spacecraft. As the baseline instruments, the probe will carry an Atmospheric Structure Instrument (ASI) that measures the temperature, pressure and acceleration, a carbon nanotube-based NanoChem atmospheric composition sensor, and an Ultra-Stable Oscillator (USO) to conduct a Doppler Wind Experiment (DWE). We also catalog promising technologies currently under development that will strengthen
small atmospheric entry probe missions in the future. While SNAP is applicable to multiple planets, we examine the feasibility, benefits and impacts of adding SNAP to the Uranus Orbiter and Probe flagship mission.