[EE] Evening Poster | S (Solid Earth Sciences) | S-CG Complex & General

[S-CG52] Intraslab and intraplate earthquakes
convener: Saeko Kita (International Institute of Seismology and Earthquake Engineering, BRI), Tomohiro Ohuchi (Geodynamics Research Center, Ehime University), Thomas P. Ferrand (東京大学地震研究所, 共同), Keishi Okazaki (Japan Agency for Marine-Earth Science and Technology)
Tue. May 22, 2018 5:15 PM - 6:30 PM Poster Hall (International Exhibition Hall7, Makuhari Messe)
The purpose of this session is to share recent advances of geo-scientific studies for intraslab (intraplate) earthquakes. We seek to formulate future directions of the interdisciplinary study of the occurrence of intermediate-depth intraslab earthquakes from the viewpoint of seismology, geodynamics and mineral physics. We welcome presentations from a wide variety of scientific disciplines, including seismology, seismotectonics, geodynamics, mineral and rock physics, other geophysics, geology, and numerical modeling. Studies for outer-rise earthquakes, shallow-depth intraplate earthquakes and deep earthquakes are also welcomed because it is important to know the characteristics of shallow-depth intraslab earthquakes and deep earthquakes for understanding for the generation process of intermediate-depth intraslab earthquakes.

[SCG52-P01] Deformation of quartz single crystals under the coesite-stable conditions
Ranto Kawakami1, *Tomohiro Ohuchi1 (1.Geodynamics Research Center, Ehime University)
Keywords: quartz, coesite, phase transition, faulting

The mechanisms of deep-focus (> 300 km) earthquakes are fundamentally different from those of shallow (< 40 km) earthquakes, because frictional sliding of faults is quite difficult at upper mantle pressures due to strong pressure dependency of friction coefficient (i.e., Byerlee’s law). It has been believed that deep-focus earthquakes are triggered by the pressure-induced olivine-wadsleyite/ringwoodite transition (i.e., the anticrack model). Shubnel et al. (2013) conducted deformation experiments on Mg$_2$GeO$_4$ olivine and reported that grain size reduction through the olivine-spinel transition triggers a faulting. To revisit the process of anticracking, we conducted deformation experiments on single-crystal quartz (alpha phase) at pressures of 3-4 GPa and temperatures of 1000-1100°C, corresponding to the coesite-stability field. Phase transition from quartz to coesite was mostly limited around the surface of the samples. Microcracking along a cleavage associating acoustic emissions was common in each deformation runs. Even though both quartz and coesite phases coexisted under each conditions, faulting was limited at 3.5 GPa and 1000°C. Gouge layer developed along a fault consists of fine-grained quartz (coesite was not observed), suggesting that faulting occurred due to high differential stress exceeding the confining pressure (i.e., Goetze’s criterion). Microstructural observations suggest that quartz-coesite phase transition proceeds via nucleation and growth of coesite lamellae, namely grain size reduction does not occur as a result of the phase transition. The absence of anticracks in quartz samples might be related with the intracrystal nucleation of high-pressure phase (i.e., lamellae).