Interaction and Coevolution of the Core and Mantle in the Earth and Planets

convener: Tsuyoshi Iizuka (University of Tokyo), Hidetoshi Shibuya (Department of Earth and Environmental Sciences, Faculty of Advanced Science and Technology, Kumamoto University), Taku Tsuchiya (愛媛大学地球深部ダイナミクス研究センター, 共同), Kenji Ohta (Department of Earth and Planetary Sciences, Tokyo Institute of Technology)

Tue. May 22, 2018 5:15 PM - 6:30 PM Poster Hall (International Exhibition Hall7, Makuhari Messe)

Recent observational and experimental investigations have significantly advanced our understanding of the structure and constituent materials of the deep Earth. Yet, even fundamental properties intimately linked with formation and evolution of the planet, such as details of the chemical heterogeneity in the mantle and light elements dissolved in the core, remained unclear. Seismological evidence has suggested a vigorous convection in the lower mantle, whereas geochemistry has suggested the presence of stable regions there that hold ancient chemical signatures. The amounts of radioactive isotopes that act as heat sources and drive dynamic behaviors of the deep Earth are also still largely unknown. We provide an opportunity to exchange the achievements and ideas, and encourage persons who try to elucidate these unsolved issues of the core-mantle evolution using various methods, including high-pressure and high-temperature experiments, high-precision geochemical and paleomagnetic analyses, high-resolution geophysical observations, geo-neutrino observations, and large-scale numerical simulations. Since this session is co-sponsored by geomagnetism, paleomagnetism and rock magnetism division of the SGEPSS, contributions in geomagnetism and geodynamo simulation are also encouraged.

Rock-magnetic properties of single zircon crystals sampled from the Yangtze River and the Mississippi River

*Masahiko Sato1, Shinji Yamamoto2, Yuhji Yamamoto3, Wei Du1, Masao Ohno4, Hideo Tsunakawa5, Shigenori Maruyama5 (1.The University of Tokyo, 2.Yokohama National University, 3.Kochi University, 4.Kyushu University, 5.Tokyo Institute of Technology)

Keywords: Zircon, Rock-magnetism, Yangtze river, Mississippi river

Geomagnetic field paleointensity data provide critical information about the thermal evolution of the Earth, and the state of the geomagnetic field is closely related to the surface environment. While it is pivotal to understand the variations in geomagnetic field intensity throughout the history of the Earth, data are still too scarce to resolve billion-year-scale geomagnetic field variation. This is primarily because of the lack of geological samples for older eras, which often result in unsuccessful paleointensity experiments. In this study, we focus on a paleointensity experiment using single zircon crystal. Zircon crystals play an important role in paleomagnetic studies because they have several mineralogical advantages: (1) they commonly occur in crustal rocks, (2) precise age determinations with U–Th–Pb and (U–Th)/He analyses are possible, and (3) they have highly resilient responses to alterations and metamorphism.

In order to evaluate the feasibility of the paleointensity experiment using single zircon crystals, we conducted systematic rock-magnetic measurements for single zircon crystals sampled from the Yangtze River and the Mississippi River. Remanent magnetizations of the single zircon crystals were measured using the superconducting quantum interference device magnetometer. Natural remanent magnetization (NRM) intensity was first measured. Then low-temperature demagnetization (LTD) treatment was further conducted, and the memory (NRM intensity after LTD treatment) was measured. We also carried out alternating field
demagnetization (AFD) treatment, and the memory (NRM intensity after AFD treatment) was measured. After the NRM measurements, isothermal remanent magnetization (IRM) was imparted with a field of 1 T using pulse magnetizer, and the resultant IRM intensity was measured. Subsequently, IRM intensity after LTD treatment and AFD treatment were measured. For selected samples, hysteresis loop and low-temperature remanence curves were measured using the alternating gradient magnetometer and the magnetic property measurement system. We will discuss the rock-magnetic properties of single zircon crystal based on the experimental results.