Deformed rocks, Metamorphic rocks and Tectonics
convener: Yoshihiro Nakamura (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology), Yumiko Harigane (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST))
Mon. May 21, 2018 5:15 PM - 6:30 PM Poster Hall (International Exhibition Hall7, Makuhari Messe)
We invite all researchers who aim to understand the dynamics of the earth's crust and mantle at the plate boundaries, to discuss the latest results from various viewpoints. The scope will include contributions through petrology and structural geology as well as various techniques including rheology and transformation of heat and mass.

Fabric development on chemically heterogeneous mantle beneath the Gakkel Ridge in Arctic ocean
*Yumiko Harigane¹, Katsuyoshi Michibayashi², Tomoaki Morishita³, Jonathan Snow⁴ (¹Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), ²Shizuoka Univ., ³Kanazawa Univ., ⁴Univ. Houston)
Keywords: olivine fabric, rare-earth element, mylonite, peridotite, heterogeneous mantle, Gakkel Ridge

Gakkel ridge is ultraslow-spreading ridge (6-13 mm/year in full spreading rate) which extends for 1,800 km across the Eurasian basin of the Arctic Ocean (Coakley and Cochran, 1998 and other references). Based on results from bathymetry and rock sampling, Michael et al. (2003) revealed three distinct regimes with different abundance of rock types on the Gakkel Ridge: a western volcanic zone, sparsely magmatic zone on central zone and an eastern volcanic zone. The sparsely magmatic zone is characterized by abrupt morphological changes with no volcanic ridges and large exposures of mantle peridotite. Previous geochemical study proposed that osmium isotopic results of some refractory peridotites have 2 billion years-old, implying the long-term preservation of refractory peridotites in the asthenospheric mantle (Liu et al., 2008) and the heterogeneous mantle existed beneath the Gakkel Ridge is the consequence of ancient melting, combined with subsequent melt percolation and entrainment. (D’Errico et al., 2016). However, an olivine fabric in such heterogeneous mantle has not yet been studied in detail. Here, we present the detailed rock descriptions, analyses of mineral fabrics, and geochemical analyses of the minerals in the 14 deformed peridotite samples recovered from two dredge sites (PS59-235 and PS66-238) on the sparsely magmatic zone of Gakkel Ridge.