Risk assessment of radiocesium transfer from soil to plant in decontaminated agricultural land in Tomioka, Fukushima

*Kohei Kurokawa¹, Atsushi Nakao¹, Junta Yanai¹

1. Graduate School of Life and Environmental Sciences, Kyoto Prefectural University

After the Fukushima Daiichi nuclear power plant (FDNPP) accident in 2011, decontamination of agricultural land had been taken in highly contaminated areas in Fukushima prefecture except difficult-to-return zone. As a result, the total ¹³⁷Cs content in the soil surface was basically reduced to less than 5,000 Bq kg⁻¹. However, few studies have elucidated the transfer risk of ¹³⁷Cs from soil to plant on decontaminated field. Therefore, the objective of this study was to determine total and exchangeable ¹³⁷Cs content as well as plant-available K content of soil in a wide area of the decontaminated agricultural land because they are reported as important indices to predict the ¹³⁷Cs transfer risk. In November 2016, 173 soil samples were collected from the plowed layer (0-15 cm depth) of decontaminated agricultural land in Tomioka town, Fukushima prefecture, Japan (N37°20', E141°00') located about 10 km south of the FDNPP. The total ¹³⁷Cs content in soils was determined by γ -ray spectrometry. Potassium in soils was extracted with 1 M CH₃COONH₄ and boiling 1 M HNO₃ to determine exchangeable K content from boiling HNO₃ extractable K content. For 32 samples which exceeded 2,000 Bq kg⁻¹ in total ¹³⁷Cs content, exchangeable ¹³⁷Cs content in soils was also determined by γ -ray spectrometry.

Total ¹³⁷Cs content in soils was on average $1.2\pm1.0\times10^3$ Bq kg⁻¹ in the decontaminated fields which was much lower than total ¹³⁷Cs content before decontamination (6,700 Bq kg⁻¹). The exchangeable K content was on average20.7±8.96 mg K₂O 100g⁻¹. Those of about 80% of soils were less than the recommended value by Fukushima prefecture (25 mg K₂O 100g⁻¹) to reduce ¹³⁷Cs transfer from soil to plant. Total ¹³⁷Cs content in soils showed a positive correlation with exchangeable K content (p < 0.01). This correlation indicated that decontamination to reduce total ¹³⁷Cs content also led to the reduction of exchangeable K content. The exchangeable ¹³⁷Cs content was on average 230±140 Bq kg⁻¹ (value range: from 40 to 520 Bq kg⁻¹) and showed a negative correlation with nonexchangeable K content (p < 0.05). This negative correlation indicated that ¹³⁷Cs was strongly adsorbed on the soil in association with nonexchangeable K, since nonexchangeable K was basically related to the specific adsorption site for Cs. In conclusion, in decontaminated agricultural land, 1) the exchangeable K content in soil should be increased for reducing transfer risk of ¹³⁷Cs and 2) the nonexchangeable K content can be used as a good index to select fields with lower transfer risk of ¹³⁷Cs.

Keywords: Fukushima, radiocesium, soil, decontamination