History of the Leeuwin Current during the last 5 million years: Evidence from seawater Neodymium isotope variation

*高柳栄子1、若木重行2、Irwan Irwan1、関根直紀1、De Vleeschouwer David3、Groeneveld Jeroen3、Bogus Kara4、石輪健樹5、佐藤時幸6、Mamo L. Briony7、He Yuxin8、McHugh M. Cecilia9、Reuning Lars10、Renema Willem11、Christensen A. Beth12、Henderiks Jorijntje13、Gallagher J. Stephen14、Fulthorpe S. Craig15、石川剛志2、横山祐典16、井龍康文1

*Hideko Takayanagi1, Shigeyuki Wakaki2, Irwan Irwan1, Naoki Sekine1, David De Vleeschouwer3, Jeroen Groeneveld9, Kara Bogus4, Takeshiige Ishiwa5, Tokiyuki Sato6, Briony L. Mamo7, Yuxin He8, Cecilia M. McHugh9, Lars Reuning10, Willem Renema11, Beth A. Christensen12, Jorijntje Henderiks13, Stephen J. Gallagher14, Craig S. Fulthorpe15, Tsuyoshi Ishikawa2, Yusuke Yokoyama16, Yasufumi Iryu1


The Leeuwin Current (LC), a shallow (<300 m depth) and narrow (<100 km width) eastern boundary warm current, transports relatively warm, less saline, and oligotrophic tropical seawater poleward along the Western Australian coastline. The water mass of the LC mainly originates from the Indonesian Throughflow (ITF), which connects the upper ocean circulation of the Pacific and Indian oceans and transports heat and freshwater through the Indonesian Gateway: consequently, a secular variation in strength and volume of the ITF relate closely to that of the LC. Since the ITF associated with the subsequent LC is regarded as one of the significant thermohaline circulations in the Southern Hemisphere, it is crucial to reconstruct a detailed history of these surface currents and to reveal their relationships to regional and global climates.

Orbital- to million-scale variations in the ITF with the subsequent LC during the last 5 Myr are assumed to be related to the tectonic history of the Indonesian seaway restriction/unrestriction and paleoceanographic conditions (e.g., glacial/deglacial sea-level change, El Niño/La Niño-like state of the Pacific Ocean, and variability of the Western Pacific Warm Pool). However, the detailed timing of major restriction/unrestriction of the ITF and the initiation and development of the Leeuwin Current are still unclear. The International Ocean Discovery Program (IODP) Expedition 356 recovered continuous Cenozoic (mainly the Miocene or younger) shallow-water carbonates, off northwestern Australia. Since some of the drilled sites are considered to be strongly influenced by the LC, Neodymium isotopes of foraminifers in the shallow-water carbonates are expected to record direct evidence of changes in the water mass along the Western Australian coastline. The objective of our research is to elucidate the long-term history of the Leeuwin Current during the last 5 Myr based on carbon, oxygen, and neodymium isotope records of foraminifers from IODP sites U1460 and U1463.

キーワード：レーヴィン海流、ネオジム同位体、西オーストラリア沖、浅海性炭酸塩堆積物、過去500万年間、炭素・酸素同位体比
Keywords: Leeuwin Current, Neodymium isotopes, Off western Australia, Shallow-water carbonate, The last 5 million years, Carbon and oxygen isotope composition

©2018. Japan Geoscience Union. All Right Reserved. - MIS01-10 -