Cosmic ray events shown in 14C data

*Fusa Miyake¹

1. Institute for Space-Earth Environmental Research, Nagoya University

Cosmic rays falling on the Earth mainly come from outside the solar system (Galactic Cosmic Ray: GCR) and the sun (Solar Cosmic Ray: SCR). Incoming cosmic rays interact with the atmosphere, whence cosmic rays produce cosmogenic nuclides such as 14 C. Carbon-14 is oxidized to form 14 CO $_2$ shortly thereafter its production, and is incorporated in tree-rings. Therefore, 14 C contents in tree rings would be a proxy of past cosmic ray intensities.

Several past cosmic ray increase events including the AD 775 event have been detected as a rapid increase of ¹⁴C contents in tree rings, namely "¹⁴C spike". It is considered that an origin of these events is an extreme Solar Proton Event (SPE) originated from large solar flares and coronal mass ejections. An existence of ¹⁴C spikes is important not only to understand the solar activities but also to offer an annual time marker in ¹⁴C data which can be applied to an annual radiocarbon dating and a dendrochronology. Recently, such application studies have been performed, e.g. annual age determination of a volcanic eruption of Mt. Baitoushan (AD 946) and historical wood sample of a Switzerland chapel using the AD 775 event.

In this presentation, I will introduce detected rapid ¹⁴C increase events, their origins, and application studies of ¹⁴C spikes.

Keywords: Radiocarbon, 14C spike, Annual cosmic ray event