Investigation of Venusian upper troposphere using millimeter-wave continuum emission

*Hideo Sagawa ${ }^{1}$, Hiroyuki Maezawa ${ }^{2}$
1. Kyoto Sangyo University, 2. Osaka Prefecture University

Venus has dense 90-bar CO_{2} atmosphere with a thick cloud layer covering entire the planet at altitudes of ~50-70 km. This optically thick cloud layer hampers us to observe any information below the cloud. Only a few specific spectral regions at near infrared (e.g., 2.3 micron) play as the atmospheric "window" at which wavelengths the thermal emission from the hot lower atmosphere ($\sim 35 \mathrm{~km}$ for 2.3 micron window) leaks to the space. The emission at such near infrared wavelengths is attenuated by cloud particles, and can be used to retrieve cloud opacities.

A new approach to the upper troposphere of Venus is proposed by using millimeter-wave (microwave) observations. At the microwave region, the main opacity source in the Venusian atmosphere is the collision induced absorption (CIA) of CO_{2}, whereas the cloud opacity becomes almost negligible due to relatively long wavelength of observations compared to the sizes of cloud particles (${ }^{\text {o order of several }}$ microns). The $\mathrm{CO}_{2} \mathrm{CIA}$ reduces its absorption intensity with increasing the wavelength at millimeter-wave domain (and becomes almost transparent at radio frequencies). The radiative transfer calculation of the $\mathrm{CO}_{2} \mathrm{CIA}$ opacity indicates that the thermal emission originated from the altitudes of $\sim 40-60 \mathrm{~km}$ can be observed at millimeter-wave of $\lambda=3-4 \mathrm{~mm}$ (frequency of $\sim 60-100 \mathrm{GHz}$) -which is the operation wavelength of the currently under development ALMA Band-2 receiver.

This study reviews potential scientific topics that can be investigated with the millimeter-wave continuum emission from Venus atmosphere, and presents feasibility study of the application of ALMA -Band 2 receiver in future Venus observations.

Keywords: Venus, atmosphere, ALMA

