The response of the ionosphere to increase of CO$_2$: simulation results with GAIA model

*Takamichi Abe1, Huixin Liu2, Yasunobu Miyoshi3

1. Department of Earth and Planetary Sciences, Kyushu University, 2. Earth and Planetary Science Division, Kyushu University SERC, Kyushu University, 3. Department of Earth and Planetary Sciences, Faculty Sciences, Kyushu University

We investigated the influence of increasing CO$_2$ on the ionosphere by conducting two simulations with the atmosphere-ionospheric model of GAIA. This model indicated that trends of F_2 peak (N_{mF_2} and H_{mF_2}) are negative in most locations under the CO$_2$ cooling effect. The global averaged magnitude of N_{mF_2} negative effect is about -0.7%, but a number of positive locations cannot negligible. Trends of N_{mF_2} are seasonally asymmetry; winter hemisphere tend to have positive trends while summer hemisphere tend to have negative trends during 12LT and 0LT. The trends of H_{mF_2} are also negative in many locations, which global averaged magnitude is about -0.7km. Trends of H_{mF_2} have positive only near geomagnetic dip equator.

Keywords: ionosphere, cooling effect