The response of the ionosphere to increase of CO_2 : simulation results with GAIA model

*阿部 宇宙¹、Liu Huixin²、三好 勉信³ *Takamichi Abe¹, Huixin Liu², Yasunobu Miyoshi³

1. 九州大学 理学府 地球惑星科学専攻、2. 九州大学理学研究院地球惑星科学専攻 九州大学宙空環境研究センター、3. 九 州大学大学院理学研究院地球惑星科学部門

1. Department of Earth and Planetary Sciences, Kyushu University, 2. Earth and Planetary Science Division, Kyushu University SERC, Kyushu University, 3. Department of Earth and Planetary Sciences, Faculity Sciences, Kyushu University

We investigated the influence of increasing CO_2 on the ionosphere by conducting two simulations with the atmosphere-ionospheric model of GAIA. This model indicated that trends of F_2 peak (N_mF_2 and H_mF_2) are negative in most locations under the CO_2 cooling effect. The global averaged magnitude of N_mF_2 negative effect is about -0.7%, but a number of positive locations cannot negligible. Trends of N_mF_2 are seasonally asymmetry; winter hemisphere tend to have positive trends while summer hemisphere tend to have negative trends during 12LT and 0LT. The trends of H_mF_2 are also negative in many locations, which global averaged magnitude is about -0.7km. Trends of H_mF_2 have positive only near geomagnetic dip equator.

キーワード:電離圏、寒冷化 Keywords: ionosphere, cooling effect