Formation of Uranian system via a giant impact

*Shoji Ueta¹, Shigeru Ida², Masahiro Ogihara³, Alessandro Morbidelli⁴, Patrick Michel⁴, Tristan Guillot⁴, Natsuki Hosono⁵, Takayuki R Saitoh²

1. Kyoto University, 2. Tokyo Tech, ELSI, 3. NAOJ, 4. Nice Observatory, 5. JAMSTEC

Uranus has 5 regular satellites. The obliquity of Uranus is over 90° , which is anomalous in our solar system. A giant impact scenario would explain origins of these properties. In this study, we perform high-resolution SPH simulations (N $^\circ$ 10^7) for the formation of Uranian system via Giant Impact and show how much material is released around Uranus. In some cases, we find that solid materials are distributed in circum-Uranian orbits after a giant impact, which is massive enough to create satellites. We also find that the amount of materials that are distributed to the circum-Uranian orbit depends on the equation of state (EoS). We want to show results of high-resolution simulations using EoSs, SESAME and ANEOS.

Keywords: Uranus, Giant Impact