Estimation of pore fluid overpressures for tensile cracking at depth of shallow slow earthquakes *大坪 誠¹、氏家 恒太郎²、Hardebeck Jeanne L.³、最首 花恵¹、宮川 歩夢¹、山口 飛鳥⁴ *Makoto Otsubo¹, Kohtaro Ujiie², Jeanne L. Hardebeck³, Hanae Saishu¹, Ayumu Miyakawa¹, Asuka Yamaguchi⁴ - 1. 産業技術総合研究所、2. 筑波大学、3. 米国地質調査所、4. 東京大学 - 1. Geological Survey of Japan/AIST, 2. University of Tsukuba, 3. U.S. Geological Survey, 4. The University of Tokyo Pore fluid pressure $P_{\rm f}$ is important for understanding slow earthquake mechanics. In this study, we estimated the pore fluid pressure during the formation of foliation-parallel quartz veins filling mode I cracks in the Makimine mélanges, eastern Kyushu, SW Japan. In the coastal region of the Makimine mé langes (Late Cretaceous Shimanto accretionary complex of SW Japan; temperature = $300-350^{\circ}$ C, Palazzin et al., 2016), the mélange preserves quartz-filled shear, foliation-parallel veins and tension vein arrays. We applied the stress tensor inversion approach proposed by Sato et al. (2013) to estimate stress regimes by using foliation-parallel vein orientations. The estimated stress is a reverse faulting stress regime with a sub-horizontal σ_1 -axis trending NW–SE and a sub-vertical σ_3 -axis, and the driving pore fluid pressure ratio P^* ($P^* = (P_{\rm f} - \sigma_3) / (\sigma_1 - \sigma_3)$) is $\tilde{}$ 0.1. When the pore fluid pressure exceeds σ_3 , veins filling mode I cracks are constructed (Jolly and Sanderson, 1997). The pore fluid pressure that exceeds σ_3 is the pore fluid overpressure $\Delta P_{\rm f}$ ($\Delta P_{\rm f} = P_{\rm f} - \sigma_3$). To estimate the pore fluid overpressure, we used the poro-elastic model for extension quartz vein formation (Gudmundsson, 1999). $P_{\rm f}$ in the case of the Makimine mélanges are $\tilde{}$ 280 MPa (assuming depth = 10 km, density = 2750 kg/m³, tensile strength = 5 MPa and Young's modulus = 7.5–15 GPa). The normalized pore pressure ratio λ^* ($\lambda^* = (P_{\rm f} - P_{\rm h}) / (P_{\rm l} - P_{\rm h})$, $P_{\rm l}$: lithostatic pressure; $P_{\rm h}$: hydrostatic pressure) is $\tilde{}$ 1.03 ($P_{\rm f} > P_{\rm l}$). キーワード:スロー地震、応力、亀裂、流体、沈み込み帯 Keywords: Slow earthquake, Stress, Crack, Fluid, Subduction