Recently, deep-sea sediments containing a high concentration of rare-earth elements and yttrium (REY), which is called “REY-rich mud”, were discovered in the Pacific Ocean [1]. Moreover, the presence of “extremely REY-rich mud” was confirmed within the Japanese exclusive economic zone (EEZ) surrounding Minamitorishima Island [2]. Although previous studies have shown that the main host phase of REY in these sediments is biogenic calcium phosphate based on bulk and in situ geochemical analyses [2,3], the contribution of other components constituting the REY-rich mud have not been completely understood yet.

One of the most effective ways to constrain the origin(s) of the deep-sea sediments, including REY-rich mud, is to use isotopic ratios of the sediments, because each possible geochemical end-member has characteristic isotopic ratios reflecting source materials and genetic processes [4].

Here, to clarify the origin of deep-sea sediments within the Minamitorishima EEZ, we modeled and quantified the contribution ratios of a few, representative geochemical end-members based on Sr isotopic ratio and major-/trace-element contents. The reconstructed downhole variation of the contribution ratios indicates a transition of end-members along with the change of geological settings due to the motion of the Pacific plate.

References

キーワード：Sr同位体、端成分、深海堆積物、南鳥島EEZ、レアアース泥
Keywords: Sr isotopic ratio, end-members, deep-sea sediments, Minamitorishima EEZ, REY-rich mud