## The Fe-Fe<sub>2</sub>P and Ni-Ni<sub>2</sub>P phase diagrams at 6 GPa

Daniil Minin<sup>1</sup>, Anton Shatskiy<sup>1</sup>, \*Konstantin Litasov<sup>1</sup>, Hiroaki Ohfuji<sup>2</sup>

1. V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia, 2. Geodynamic Research Center, Ehime University, Matsuyama, Japan

Fe-P and Ni-P are among the basic phase diagrams for understanding the core formation in asteroids and planets. Recent finding of high-pressure minerals in iron meteorites (Holtstam et al., 2003; Litasov and Podgornykh, 2017) and abundance of complex Fe-Ni-P-S quench textures with unusual bulk compositions indicate great importance of the study of related systems at elevated pressures. Although high-pressure modifications of meteorite appear under shock impact conditions for the short time, static high-pressure experiments are more relevant for interpretation of these processes relative to shock wave experiments, where duration of shock is too short to model meteorite impact. We have determined the Fe-Fe<sub>2</sub>P and Ni-Ni<sub>2</sub>P phase diagrams at 6 GPa and 900-1600 °C. Experiments have been conducted in ceramic (3 MgO + 4 SiO<sub>2</sub>) capsules using multianvil technique.

The Fe-Fe<sub>2</sub>P system has two stable phosphide compounds: Fe<sub>3</sub>P and Fe<sub>2</sub>P. The Fe-Fe<sub>3</sub>P eutectic is established at 1075 °C and 16 mol% P. The Fe<sub>3</sub>P compound melts incongruently at 1250 °C to produce Fe<sub>2</sub>P and liquid containing 23 mol% P. The Fe<sub>2</sub>P compound melts congruently at 1575 °C. In whole studied temperature range, metallic iron dissolved measurable amounts of P suggesting an existence of limited solid solutions of P in Fe. The maximum P content in Fe, 4.2-5.2 mol%, is established at 1100-1200 °C. X-ray diffraction study indicates that Fe<sub>2</sub>P corresponds to barringerite structure, whereas Fe<sub>3</sub>P corresponds to schreibersite. Thus, quenched phases at 6 GPa do not corresponds to high-pressure polymorphs, such as (Fe,Ni)<sub>2</sub>P allabogdanite (Britvin et al., 2002), which was synthesized previously at 8 GPa (Dera et al., 2008).

The Ni-Ni<sub>2</sub>P system has three stable phosphide compounds: Ni<sub>3</sub>P, Ni<sub>3-x</sub>P, where x = 0.4-0.7 and Ni<sub>2</sub>P. The Ni-Ni<sub>3</sub>P eutectic locates at 975 °C and 20 mol% P. The Ni<sub>3-x</sub>P solid solution field narrows to the Ni<sub>2.3</sub>P composition as temperature increases to 1175 °C, where Ni<sub>2.3</sub>P melts incongruently to Ni<sub>2</sub>P and liquid containing 29 mol% P. The Ni<sub>2</sub>P compound melts congruently at 1250 °C. Ni also forms limited solid solutions with P. Similarly to Fe-P system, Ni<sub>2</sub>P and Ni<sub>3</sub>P compounds corresponds to barringerite and nickelphosphide crystal structures at 6 GPa. The intermediate compound Ni<sub>3-x</sub>P has variable composition, which may correspond to Ni<sub>5</sub>P<sub>2</sub> or Ni<sub>12</sub>P<sub>5</sub> observed at 1 atm.

The work is supported by Russian Science Foundation (No 17-17-01177).

## References

Britvin, S.N., Rudashevsky, N.S., Krivovichev, S.V. et al. (2002) Amer. Mineral., 87: 1245-1249. Dera, P., Lavina, B., Borkowski, L.A., et al. (2008) Geophys. Res. Lett., 35: doi: 10.1029/2008GL033867. Holtstam, D., Broman, C., Soderhielm, J., Zetterqvist, A. (2003) Meteorit. Planet. Sci., 38: 1579-1583. Litasov, K.D., Podgornykh, N.M. (2017) J. Raman Spect., 48: 1518-1527.

Keywords: iron phosphide, nickel phosphide, high-pressure experiment, planetary core, meteorite