High precision ¹⁸²W/¹⁸³W isotopic compositions of terrestrial samples

Asako Takamasa¹, Yusuke Fukami¹, *Katsuhiko Suzuki^{1,2}

1. Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, 2. Department of Earth Sciences, Graduate School of Science, Tohoku University

Tungsten (W) has five isotopes (M = 180, 182, 183, 184, 186), and ¹⁸²W isotope is a beta-decay product of derived from ¹⁸²Hf with the short half life of 8.9 m.y. Both Hf and W are highly refractory elements and are accumulated in the early stage of the proto-earth. As Hf and W are a lithophile and is a siderophile elements, respectively, ¹⁸²Hf-¹⁸²W system could give constraints on metal-silicate (core-mantle) differentiation especially core segregation in the very early Earth system because of its large fractionation between metal-silicate and the short half life of ¹⁸²Hf. Improvement of analytical techniques of W isotope analyses allows us to obtain highly precise ¹⁸²W/¹⁸³W ratios of vocanic rocks, which leads to findings of W isotope anomalies (mostly positive) in old komatiites (2.4 – 3.8 Ga) and young volcanic rocks with positive anomalies of 12 Ma Ontong Java Plateau and 6 Ma Baffin Bay (Rizo et al., 2016) and with negative anamalies of those such as the Loihi basalt.

In our study, high-precision W isotope ratio measurement with MC-ICP-MS (Thermo co. Ltd., NEPTUNE PLUS) has been developed. We have measured W standard solution (SRM 3163) and obtained the isotopic compositions with a enough high precision of \pm 5ppm. However, the standard solution, which separated by cation or anion exchange resin, has systematical ¹⁸³W/¹⁸⁴W drift of -5ppm. These phenomena was also reported by Willbold et al. (2011). Therefore, we corrected the measured W isotope ratios of samples with the standard solution processed by the same method as that of the samples. This technique leads to the reproducible W isotopic compositions with reproducibility of several ppm. We have obtained the negative ¹⁸²W/¹⁸³W for the basalts with the high ³He/⁴He isotopic composition from the Loihi, Hawaii, through the developed analytical method. This result is consitent with that of Mundl et al., (2017). As negative anomaly of ¹⁸²W/¹⁸³W could be created by the early earth core segregation, it is probably a signature of core-mantle interaction.

Keywords: core-mantle interaction, W isotope, Ocean island basalt, high-precision isotope analysis