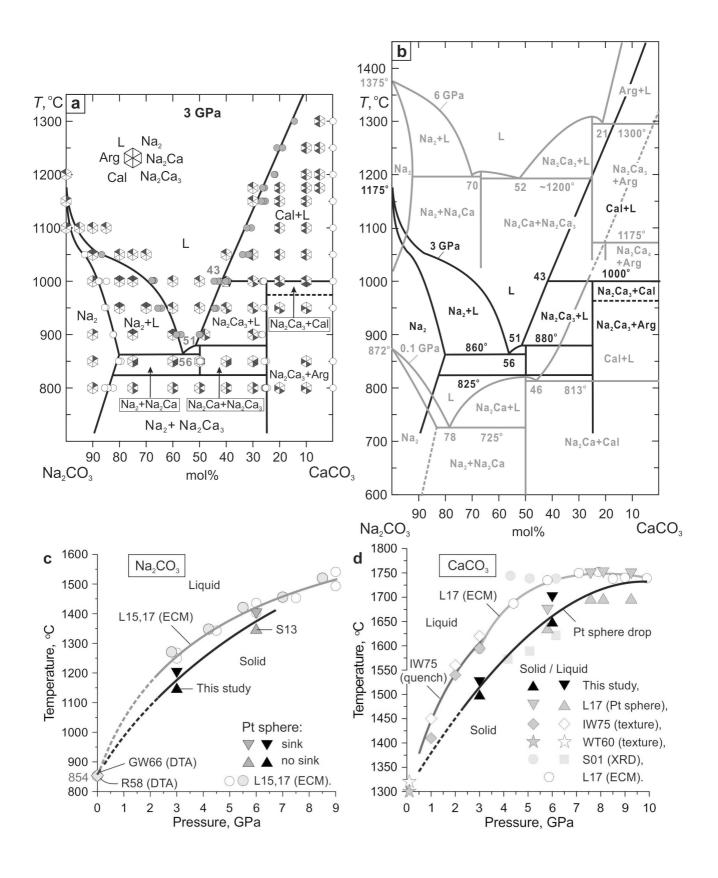
The T-X phase diagram Na_2CO_3 -CaCO₃ at 3 GPa

Ivan Podborodnikov¹, Anton Shatskiy², Anton Arefiev¹, Artem Chanyshev², *Konstantin Litasov²

1. Novosibirsk State University, Novosibirsk, Russia, 2. V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia


Phase relations in the system Na₂CO₃-CaCO₃ have been studied at 3 GPa and 800–1525 °C. The system has one intermediate compound, Na₂Ca₃(CO₃)₄, at 800 °C, and two intermediate compounds, Na₂Ca(CO₃)₂ and Na₂Ca₃(CO₃)₄, at 850 °C (Fig. 1a). CaCO₃ crystals recovered from experiments at 950 °C and 1000 °C are aragonite and calcite, respectively. Maximum solid solution of CaCO₃ in Na₂CO₃ is 20 mol% at 850 °C. The Na-carbonate–Na₂Ca(CO₃)₂ eutectic locates near 860 °C and 56 mol% Na₂CO₃. Na₂Ca(CO₃)₂ melts incongruently to Na₂Ca₃(CO₃)₄ and a liquid containing about 51 mol% Na₂CO₃ at ~ 880 °C. Na₂Ca₃ (CO₃)₄ disappears above 1000 °C via incongruent melting to calcite and a liquid containing about 43 mol% Na₂CO₃. At 1050 °C, the liquid, coexisting with Na-carbonate, contains 87 mol% Na₂CO₃. Na₂CO₃. Na-carbonate remains solid up to 1150 °C and melts at 1200 °C (Fig. 1c). The Na₂CO₃ content in the liquid coexisting with calcite decreases to 15 mol% as temperature increases to 1300 °C. CaCO₃ remains solid up to 1500 °C and melts at 1525 °C (Fig. 1d).

Considering the present and previous data, a range of the intermediate compounds on the CaCO₃-Na₂CO₃ join changes as pressure increases in the following sequence: Na₂Ca(CO₃)₂, Na₂Ca₂(CO₃)₃ (0.1 GPa) \rightarrow Na₂Ca(CO₃)₂, Na₂Ca₃(CO₃)₄ (3 GPa) \rightarrow Na₄Ca(CO₃)₃, Na₂Ca₃(CO₃)₄, Na₂Ca₄(CO₃)₅ (6 GPa) (Fig. 1b). Thus, the nyerereite stability field extends to the shallow mantle pressures, whereas the shortite stability field terminates somewhere between 0.1 and 3 GPa. Consequently, findings of nyerereite and shortite among daughter phases in the melt inclusions in olivine from the sheared garnet peridotites are consistent with their mantle origin.

This study was supported by Russian Foundation for Basic Research (No 17-05-00501).

Fig. 1. (a) The system Na_2CO_3 -CaCO₃ at 3 GPa. (b) Comparison with previous data at 0.1 GPa (Cooper et al. 1975) and 6 GPa (Shatskiy et al. 2013). (c) Na_2CO_3 melting. (d) CaCO₃ melting. Arg = aragonite; Cal = calcite; Na_2 = solid solution of CaCO₃ in Na_2CO_3 ; $Na_4Ca = Na_4Ca(CO_3)_3$; $Na_2Ca = Na_2Ca(CO_3)_2$; $Na_2Ca_3 = Na_2Ca_3(CO_3)_4$; $Na_2Ca_4 = Na_2Ca_4(CO_3)_5$; L = liquid; F = CO₂ fluid.

Keywords: carbonate, phase diagram, mantle metasomatism

