Alに富むsuperhydrous phase Bの安定性及び置換様式

Stability and substitution mechanism of Al-bearing superhydrous phase B at the mantle transition zone and the uppermost lower mantle

*柿澤 翔1、井上 徹1,2,3、中野 泰斗1、坂本 直哉4、圦本 尚義4,5,6
*Sho Kakizawa1, Toru Inoue1,2,3, Hideto Nakano1, Naoya Sakamoto4, Hisayoshi Yurimoto4,5,6

1. 愛媛大学地球深部ダイナミクス研究センター、2. 広島大学大学院理学研究科、3. 広島大学プレート収束域の物質科学研究拠点、4. 北海道大学創成研究機構、5. 北海道大学大学院理学研究院、6. JAXA宇宙科学研究所

Water is the most abundant and important volatile component in the deep mantle. Water is transported into the Earth’s deep interior by hydrous minerals in a cold subducted slab. However, all Mg-Si endmembers of dense hydrous magnesium silicates break down at temperatures close to the typical mantle geotherm. Recent studies suggest that incorporation of Al increases the high-temperature stability of these hydrous minerals. Al-bearing phase D breaks down at approximately 1600 °C and 24 GPa, which is approximately 200 °C higher than that of Mg-end member phase D (Ghosh and Schmidt, 2014). Moreover, Al-end member phase D (Al-phase D, Al2SiO4(OH)2) is stable at a temperature of over 2000 °C and pressure of 26 GPa (Pamato et al., 2015). In the case of phase H, it can form a solid solution with δ-ALOOH (Nishi et al., 2014) and this solid solution is stable even along a typical mantle geotherm (Ohira et al., 2014). On the other hand, phase A cannot contain Al. Instead, Al is included in 23 Å phase (Mg11Al2Si4O16(OH)12), which has stability region similar to phase A (Cai et al., 2015). However, the effect of Al on the stability of superhydrous phase B is not known. To clarify the stability of Al-bearing superhydrous phase B in the mantle transition zone and the uppermost lower mantle under a typical mantle geotherm, we conducted high-pressure and high-temperature experiments using a multi-anvil apparatus. Here, we report the stability of Al-bearing superhydrous phase B and the tendency of its chemical composition, and we will also discuss a mechanism of water transport to the lower mantle.

The high pressure and high temperature experiments were conducted using a multi-anvil high pressure apparatus (ORANGE-2000) installed at the Geodynamics Research Center, Ehime University, Japan. The starting materials for these experiments were powdered mixtures of MgO, Al2O3, SiO2, Mg(OH)2, and Al(OH)3 with 6 different compositions. The experiments were performed at 20 and 24 GPa at 1400 and 1600 °C. Water content of the selected samples was quantified using a SIMS installed at Hokkaido University, Japan.

Superhydrous phase B contained significant amounts of Al2O3, from 15-33 wt%, and Al-bearing superhydrous phase B remained stable, even at 1600 °C and pressures of approximately 20-24 GPa. Moreover, two types of superhydrous phase Bs with different chemical compositions coexisted at 20-24 GPa and 1600 °C. The Al2O3 and H2O contents increased, and the MgO and SiO2 contents decreased as the pressure and temperature increased. The maximum H2O content of Al-bearing superhydrous phase B is 11.1(3) wt%, which is ~1.9 times larger than that of the Mg-endmember. The substitution mechanism of Al and H can be described as 2Mg2+ + Si4+ to 2Al3+ + 2H+ + Vc (cation vacancy). The crystal structures of the two coexisting superhydrous phase Bs are expected to be slightly different from each other. The
present results indicate that Al-bearing superhydrous phase B can be stable in a subducted slab with a high Al content at temperatures typical of the mantle transition zone and lower mantle. Thus, water can be transported to the lower mantle by Al-bearing superhydrous phase B in a subducting slab, even at the typical mantle geotherm.

キーワード：スーパーハイドラスB相、高圧含水マグネシウムケイ酸塩、含水鉱物、安定性、置換様式

Keywords: superhydrous phase B, dense hydrous magnesium silicates, hydrous mineral, stability, substitution mechanism