Melting experiments on the MgSiO$_3$-SiO$_2$ system to deep lower mantle pressures

*Miyuki Anzai1, Keisuke Ozawa1, Kei Hirose1,2, Ryosuke Sinmyo1, Shigehiko Tateno2

1. The University of Tokyo, 2. ELSI, Tokyo Tech

MgSiO$_3$–SiO$_2$ system is important to understand SiO$_2$-rich chondritic mantle materials, but its melting phase relations have been determined experimentally only up to 1 GPa. Here we conducted melting experiments in a pressure range from 41 to 139 GPa using a laser-heated diamond-anvil cell (DAC), in order to determine the change in a eutectic melt composition. A cross section at the hot spot of a heated sample was prepared with a focused ion beam (FIB), and its textural and compositional characterizations were made with a SEM/EDS. Quenched molten samples always exhibited a concentric texture, with quenched melt at the center surrounded by liquidus phase(s) of MgSiO$_3$ and/or SiO$_2$. Our data show that eutectic composition changes with increasing pressure from SiO$_2$/(MgO+SiO$_2$) = 0.55 (molar ratio) at 1 GPa (Hudon et al., 2005 J. Petrol.) to ~0.60 at 41 GPa and further to ~0.65 at 135 GPa. Combining with the results on the MgO-MgSiO$_3$ system (Ozawa et al., this meeting), we discuss a large-scale differentiation in chondritic mantles starting from a wide range of MgO/SiO$_2$ ratios.

Keywords: High Pressure, Melting, Lower Mantle