Melting experiments on the $MgSiO_3$ -SiO₂ system to deep lower mantle pressures

*Miyuki Anzai¹, Keisuke Ozawa¹, Kei Hirose^{1,2}, Ryosuke Sinmyo¹, Shigehiko Tateno²

1. The University of Tokyo, 2. ELSI, Tokyo Tech

MgSiO₃-SiO₂ system is important to understand SiO₂-rich chondritic mantle materials, but its melting phase relations have been determined experimentally only up to 1 GPa. Here we conducted melting experiments in a pressure range from 41 to 139 GPa using a laser-heated diamond-anvil cell (DAC), in order to determine the change in a eutectic melt composition. A cross section at the hot spot of a heated sample was prepared with a focused ion beam (FIB), and its textural and compositional characterizations were made with a SEM/EDS. Quenched molten samples always exhibited a concentric texture, with quenched melt at the center surrounded by liquidus phase(s) of MgSiO₃ and/or SiO₂. Our data show that eutectic composition changes with increasing pressure from SiO₂/(MgO+SiO₂) = 0.55 (molar ratio) at 1 GPa (Hudon et al., 2005 J. Petrol.) to ~0.60 at 41 GPa and further to ~0.65 at 135 GPa. Combining with the results on the MgO-MgSiO₃ system (Ozawa et al., this meeting), we discuss a large-scale differentiation in chondritic mantles starting from a wide range of MgO/SiO₂ ratios.

Keywords: High Pressure, Melting, Lower Mantle