Influence of water saturation and pore structure in rocks on elastic wave velocities

*Takuya Horikawa¹, Ryosuke Umezawa¹, Makoto Katsura¹, Satoru Nakashima¹

1. Department of Earth and Space Science, Graduate School of Science, Osaka University

It is widely known that velocities ($V_{\rm P}$, $V_{\rm S}$) and attenuation of elastic waves through a rock depend on the permeability and pore fluid. The most simplified method to examine the dependence is to change the water/air ratio of pore fluids (water saturation $S_{\rm w}$). Various studies have reported viscoelastic effects of unsaturated rocks on $V_{\rm P}$. However, the relationship between $S_{\rm w}$ and $V_{\rm P}$ has not been understood quantitatively. In this study, we have measured $V_{\rm P}$ (100 kHz - 700 kHz), $V_{\rm S}$ (100 kHz) and strain changes during evaporative drying of three Berea sandstones with different pore size distributions (porosity: 22.6, 19.1, 11.6 %; permeability: 170, 230, 5 mD; hereafter described as Berea A, Berea B, Berea C, respectively).

The $V_{\rm p}$ values decrease between ca. $0.2 < S_{\rm w} < 1.0$ with frequency dependences. The meniscus size at a specific water saturation can be estimated from pores size distribution data by applying the capillary flow concept. The permeability as a function of $S_{\rm w}$ is calculated by the modified Katz and Thompson model (Nishiyama and Yokoyama, 2014) under the assumption that the wave induced water flow in an unsaturated rock occurs through the water-filled pores. The obtained frequency dependent $S_{\rm w}$ - $V_{\rm p}$ relationships are discussed by taking into account of the permeability for two theoretical models describing the viscoelasticity of unsaturated rocks: Global flow model (Biot, 1956) and Patchy saturation model (White, 1975). The theoretical predictions from these extended models showed that the $S_{\rm w}$ - $V_{\rm p}$ relations could be understood quantitatively by combining the viscoelastic effects of these models. On the other hand, $V_{\rm s}$ increases drastically for $S_{\rm w}$ -c.a. 0.2 associated with the drying shrinkage observed by the strain change measurements.

These results suggest that the frequency dependence of S_w - V_p relationships could be interpreted by using the extended Global flow and Patchy saturation model considering the dependence of pore water distribution on water saturation S_w .

Keywords: Elastic wave velocities, Water saturation, Pore size distribution, Sandstone