Criticality of cascade-up and its dependence on velocity on various fault geometry

*Kansuke Uemura¹, Satoshi Ide¹, Hideo Aochi²

1. School of Science, The University of Tokyo, 2. The French Geological Survey

Could rupture propagation be interpreted as continuing cascading-up process under fluctuation due to heterogeneity? Seismological observations (Ellsworth and Beroza, 1995; Uchide and Ide, 2007; Meier et al. 2016) suggest that there is no specific scale in initiation process, and rupture is influenced by fault heterogeneity during its growing phase. Criticality of cascading-up or halt is going be discussed in this study in the same way which many conventional studies have done for quasi-static rupture growth (e.g., Andrews, 1976; Day, 1982; Rubin and Ampuero; 2005).

We examined the situation that self-similar crack with constant rupture velocity(V_r) in a small patch encounters surrounding barrier region of unique larger fracture energy. There is a minimum patch size (R_c ^{dyn.}: the critical dynamic crack size of the fault) that crack cascades up in surrounding region, depending the fracture energy of barrier. If the patch is larger than R_c^{dyn.}, its rupture speed once decelerates but afterwards it spontaneously accelerates once the crack size exceeds the static critical crack size (R_c^{sta.}).

 $R_c^{dyn.}$ is obtained in this study by numerical simulation using BIE method of Mode II, III (Tada and Madariaga, 2000) and three-dimensional elliptical crack (Fukuyama and Madariaga, 1998). We gave following slip-weakening distance to a planer fault with homogeneous stress (T_p : yield strength, T_e : uniform stress, μ : rigidity). H[x] is Heaviside function. D_c is discontinuous at $R^{dyn.}$. $D_c(r) = D_c' r \cdot H[R^{dyn.}-r] + D_c^{BG} \cdot H[r-R^{dyn.}]$

The result, the proportion of $R_c^{dyn.}/R_c^{sta.}$ is obtained as a function of rupture velocity for each fault geometry, where both $R_c^{sta.}$ and V_r are functions of $\mu T_p D_c' / T_e^2$. or, proportion of discontinuity of fracture energy at $R_c^{dyn.}$ is also written in a similar form. i.e., $R_c^{dyn.} = (V_r) R_c^{sta.}$ and $D_c^{BG} = g(V_r) \cdot D_c' R_c^{dyn.}$

Both $f(V_r)$ and $g(V_r)$ is qualitatively similar in Mode II, III, and three-dimensional crack, which is depicted in attached figure.

These results may suggest that rupture with fast rupture velocity $(^{\circ}0.7V_s)$ is far more capable of cascading-up in barrier made by fault heterogeneity than that of slow rupture velocity $(^{\circ}0.1V_s)$

Keywords: scale independent rupture initiation, criticality of cascade up

