Seasonal variations of oceanic CO_2 disequilibrium and anthropogenic CO_2 in the subarctic North Pacific

*Bofeng Li¹, Shukuta Satori¹, Kasai Hiromi², Hiroshi Kuroda², Taniuchi Yukiko², Daisuke Hasegawa³, Yutaka Watanabe¹

1. Hokkaido University, 2. Hokkaido National Fisheries Research Institute, Japan Fisheries and Education Research, 3. Tohoku National Fisheries Research Institute, Japan Fisheries and Education Research

Assuming that the CO_2 above the surface mixed layer depth (MLD) mixes very well with air, we used a simple and new method to estimate air-sea CO_2 disequilibrium value at the MLD (C_{diseq}) as follow [Li et al., 2019];

$$C_{\text{diseg}} = C_{\text{MLD}} - C_{\text{sat. MLD}} - C_{\text{soft. MLD}} - C_{\text{carb. MLD}}$$

where C_{MLD} is the observed dissolved inorganic carbon (DIC); $C_{sat, MLD}$ is saturated DIC; $C_{soft, MLD}$ is derived from the remineralization of organic matter; $C_{carb, MLD}$ is derived from the dissolution of $CaCO_3$ in the MLD. We collected the DIC and total alkalinity (TA) samples in the subarctic North Pacific in four seasons, and measured all the DIC and TA by using semi-closed cell simultaneous method [*Li et al.*, 2016].

 C_{diseq} in this region changed from -38.29 to -56.93 μ mol kg⁻¹ in wintertime and from -9.65 to 1.02 μ mol kg⁻¹ summertime, indicating a strong seasonal change in C_{diseq} . Appling these values of C_{diseq} to the approach for estimating C_{ant} in this region, we also found a strong seasonal variation in C_{ant} .

Keywords: Air-sea CO2 disequilibrium, Anthropogenic CO2, Subarctic North Pacific