Origins of volcanic SO₂ on Earth

*Hiroshi Ohmoto¹

1. The Pennsylvania State University

 SO_2 is a principal volcanic gas today. The two important questions to be addressed are: (i). the origin of S atoms in volcanic SO_2 ; and (ii) whether or not SO_2 was an important volcanic gas of early Earth. I have approached these questions from: (a) thermodynamic- and kinetic analyses of various reactions involving S-bearing species in silicate melts, fluids, rocks, minerals, and aqueous solutions at T = 0-1500 °C and P = 1-10 kb, and (b) examinations of the chemical and S-isotopic characteristics of volcanic gases and rocks in various tectonic settings on modern Earth. Here are some of the important suggestions from these investigations:

1. All of the S-bearing species from submarine volcanic eruptions have been nearly completely trapped in oceans through reactions such as: $H_2S_{(g)} = H_2S_{(aq)}$; $4SO_{2(g)} + 4H_2O = 3HSO_4 + H_2S_{(aq)} + 3H^+$; $S_{8(g)} = 8S_{(s)}$; and $7H_2S_{(aq)} + HSO_4 + 4Fe^{2+} = 4FeS_{2(py)} + 7H^+ + 4H_2O$. S-bearing volcanic gases have only been emitted into the atmospheres by subaerial eruptions. Therefore, on the ocean-covered planets, possibly including the pre-3.0 Ga Earth, S-bearing gases have not been emitted into the atmospheres.

2. The fluids that originated from normal-mantle-derived-magmas (i.e., $logfO_2 = FMQ-2$ to FMQ+0.5) were initially H₂S-rich and SO₂-poor, whereas those from subduction-related arc magmas (i.e., $logfO_2 = FMQ+0.5$ to FMQ+3) were initially SO₂- and/or H₂S-rich.

3. H_2S -rich magmatic fluids may become SO_2 -rich gas, if: (i) the fluids were derived from high fO_2 magmas (i.e., $logfO_2 > FMQ$) and ascended slowly through conduits (i.e., diffusive eruptions) and re-equilibrated with wall-rocks at $P_{H2O} < 10$ bars, or (ii) the fluids are oxidized by reactions with an O_2 -rich atmosphere, -groundwater and/or high-f O_2 wall-rocks during and/or after the ascent through conduits. In the absence of (i) and (ii), such as the Earth prior to the oxygenation of the atmosphere, H_2S -rich magmatic fluids were not transformed to SO_2 during eruptions.

4. SO_2 -rich fluids from arc magmas would remain SO_2 -rich during explosive or diffusive eruptions. However, if the fluids cool down to <~700°C, SO_2 transforms to H₂S.

5. Volcanic SO_2 from arc magmas was transformed from seawater sulfate through the following processes: (i) formation of pyrite, hematite and anhydrite by reactions between SO_4^{-2-} -rich seawater and hot basalts on MORs; (ii) devolatilization of H₂O- and SO₂-rich fluids from the subducting oceanic crust; (iii) formation of oxidized- and SO_4^{-2-} -rich magmas by partial melting of peridotite in the mantle wedges, and (iv) degassing of SO_2 -rich fluids from these magmas. If the oceans were SO_4^{-2-} -poor, volcanic gases from arc magmas would be SO_2 -poor.

6. Oceanic SO_4^{2-} has been produced mostly by the oxidative weathering of pyrite on land. Therefore, subaerial volcanic gases on planets with O_2 -poor atmospheres would be SO_2 -poor and H_2 S-rich. Then, the current paradigm concerning the origin of mass-independent-fractionations of sulfur isotopes (MIF-S) in Archean-aged sedimentary rocks (i.e., the UV photolysis of volcanic SO_2 in an O_2 -poor atmosphere) becomes invalid. Consequently, the MIF-S record in sedimentary rocks is not supportive evidence for the "Great Oxidation Event" at ~2.5 Ga ago. Furthermore, the current atmospheric O_2 -evolution models,

which are based on the premise of SO₂-rich volcanic gases throughout geologic time, become invalid.

(7). The MIF-S in the Archean- and younger sedimentary rocks may have been created by the chemisorption isotope effects during thermochemical reductions of seawater sulfates by hydrothermally-generated, very reactive organic matter.

Keywords: volcanic SO2, evolution of the atmospheric oxygen, arc magmatism, origin of MIF-S