Development of smooth area detection method for selection of landing site on a small body

Yuki Fujii¹, *Rie Honda¹, Tomokatsu Morota⁴, yokota yasuhiro², ERI TATSUMI³, Naoya Sakatani², Manabu Yamada⁹, Shingo Kameda⁵, Toru Kouyama¹⁰, Hidehiko Suzuki⁶, Chikatoshi Honda⁷, Masahiko Hayakawa², Kazuo Yoshioka³, Yuichiro Cho³, Yukio Yamamoto², Naru Hirata⁷, Naoyuki Hirata⁸, Hirotaka Sawada², Seiji Sugita³

1. Kochi University, 2. ISAS/JAXA, 3. University of Tokyo, 4. Nagoya University, 5. Rikkyo University, 6. Meiji University, 7. Aizu University, 8. Kobe University, 9. Chiba Institute of Technology, 10. National Institute of Advanced Industrial Science and Technology

Hayabusa2 arrived at asteroid Ryugu on June 2018 and scheduled to conduct touch-down to its surface. We have developed a smooth area detection method for selecting smooth area for landing on a small body such as an asteroid. The small dark or bright spot of 1 pixel scale which might be an boulder, or some obstacles are detected by subtracting the smoothed images via median filter from the raw images. Then the coverage of these possible boulder or obstacle pixels are calculated for a circular area which represents the footprint of the accuracy of the landing, and the area with the less coverage is selected as the safer area for landing. Furthermore, the method based on the clustering of texture of the small block area. Application to Ryugu Images obtained by Hayabusa2 ONC-T will be introduced in the presentation.

Keywords: automatic detection, smooth area, clustering, median filter