A process model of L-homochiral peptides formation initiated with L-alanine

*Toratane Munegumi¹, Taisuke Yamaga¹

1. Department of Science Education, Naruto University of Education

Hydrogen abstraction from L-alanine by hydroxy radical facilitates alkylation on β -carbon of alanine as well as retention of L-chirality. The reaction rate constant of hydrogen abstraction (k=6.21x10⁷ M⁻¹s⁻¹) on β -carbon was about 3.7 times faster than that (k=1.7x10⁷ M⁻¹s⁻¹) on α -carbon. The fact supports that alkylation proceeds faster than racemization, and the chirality of product amino acids will be hold. Similar alkylation of oligopeptides will also proceed with a lower level epimerization than alkylation. This research discusses how the lower reaction rate of epimerization than alkylation lead homochiral peptides.

Keywords: L-alanine, peptides, homochirality