Characteristics of polarimetric radar parameters of dry volcanic ash clouds

*Yura Kim¹, Masayuki Maki¹, Masato Iguchi², Dong-In Lee³

1. Research and Education Center for Natural Hazards, Kagoshima University, Korimoto, Kagoshima, Japan, 2. Sakurajima Volcano Research Center/DPRI, Kyoto University, Sakurajima, Kagoshima, Japan, 3. Department of Atmospheric Sciences, Pukyong National University, Namgu, Busan, Republic of Korea

We analyzed statistically the polarimetric radar data of 9 Sakurajima volcanic eruption clouds in 2013. All eruption clouds have a height exceeding 3000m. According to the results, $Z_{\rm H}$ has positively skewed distributions (Skewness of 1.6; mean $Z_{\rm H}$ of 9.77 dBZ and median of 7.4 dBZ), $Z_{\rm DR}$ has normal distributions (Skewness of 0.02; mean $Z_{\rm DR}$ of 1.58 dB and median of 1.6 dB), $K_{\rm DP}$ has positively skewed distributions (Skewness of 7.12; mean $K_{\rm DP}$ of 0.03 deg/km and median of 0.0 deg/km), and $\rho_{\rm hv}$ has negatively skewed distributions (Skewness of -1.02; mean $\rho_{\rm hv}$ of 0.77 and median of 0.8). Depending on time after the eruption, the average $Z_{\rm H}$ decreased from 22.3 dBZ to 6.75 dBZ while the average $Z_{\rm DR}$ and $\rho_{\rm hv}$ tended to increase from 1.24 dB to 1.67 dB, and from 0.47 to 0.83, respectively.

Keywords: polarimetric radar parameters, volcanic ash, statistical analysis