Rapid *in situ* analyses of hydrogen and sulfur isotope ratios in basaltic glass by SIMS and their appilications

*Kenji Shimizu¹, Takayuki Ushikubo¹, Tomokazu Murai², Fumihiro Matsuura², Yuichiro Ueno²

1. Kochi Core Center, Japan Agency for Marine-Earth Science and Technology, 2. Tokyo Institute of Technology

We developed rapid and accurate *in situ* analyses of hydrogen and sulfur isotope ratios of basaltic glass using high-resolution, multi-collection secondary ion mass spectrometry (CAMECA IMS-1280HR). Hydrogen and sulfur isotopes of standard basaltic glasses were determined by a high-temperature conversion elemental analyzer/isotope ratio mass spectrometer (IRMS) and IRMS, respectively. For the *in situ* analysis of sulfur isotopes, a defocused Cs beam (~0.5 nA; ~10 μ m diameter) was used, but for hydrogen isotopes, we used a larger defocused beam (~5 nA; ~15 μ m diameter) to decrease the hydrogen background. For analyses of D/H (³⁴S/³²S) ratios, ¹⁶OH (³²S) and ¹⁶OD (³⁴S) were measured in multi-detection mode with a Faraday cup and an axial electron multiplier, respectively. Each measurement lasted 6–7 minutes. Precisions (2 standard errors) for D/H and ³⁴S/³²S ratios were ~6 ‰(H₂ O > 1 wt%) and ~0.6 ‰(S > 1000 ppm), respectively. Our developed method for rapid and high spatial resolution analysis can determine concentrations of volatiles, hydrogen and sulfur isotopes in a single small melt inclusion of ~30 μ m diameter. Using this method, we analyzed hydrogen and sulfur isotope ratios of submarine basaltic glasses from mid-oceanic ridges and oceanic islands of Hawaii and confirmed that their D/H and S isotope ratios were consistent with reported values.

Keywords: SIMS, hydrogen isotope, sulfur isotope, basaltic glass