Local-time Variabilities of SABER CO_2 in the Mesosphere and Lower Thermosphere Region

*Cornelius Csar Jude Salinas¹, Loren Chang¹, Danie Liang², Jia Yue³, Liying Qian⁴, Quan Gan⁵, James Russel III³, Martin G Mlynczak⁶

1. Institute of Space Science, National Central University, 2. Institute of Earth Science, Academia Sinica, 3. Department of Atmospheric Sciences, Hampton University, 4. High Altitude Observatory, National Center for Atmospheric Research, 5. Department of Physics and Astronomy, Clemson University, 6. NASA Langley Research Center

This work presents the local-time variabilities of CO_2 in the Mesosphere and Lower Thermosphere region (MLT region) as observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics Satellite (TIMED Satellite). These are then compared to CO_2 as modeled by the Whole Atmosphere Community Climate Model –eXtended (WACCM-X). Also using WACCM-X, a tendency analysis using the continuity equation is done to explain the local-time variabilities of CO_2 in the MLT region. Finally, consequences of including a significant local-time variability in CO_2 when retrieving SABER temperature profiles are determined.

Keywords: Carbon Dioxide, Mesosphere and Lower Thermosphere Region, Tides