The earth’s atmosphere in a height range of more than 80 km is called the upper atmosphere, and the atmospheric layer is influenced by both the solar activity and the atmospheric waves propagating from the lower atmosphere. Therefore, in order to understand the physical mechanism of the short-term and long-term variations in the upper atmosphere, we need to perform an integrated analysis of various kinds of ground-based and satellite observation data taken by different instruments. Since these observation data were separately being managed by each institute, it was difficult for users to effectively find and analyze them for promotion of an interdisciplinary study. In order to solve this problem, the Inter-university Upper atmosphere Global Observation NETwork (IUGONET) project has been initiated in 2009, consisting of five institutes (Tohoku University, National Institute of Polar Research, Nagoya University, Kyoto University, and Kyushu University). In this project, we have added data information (metadata) for various kinds of ground-based observation data in the solar-terrestrial physics and built a practical database (IUGONET Type-A) to share them on the Internet. We have also developed an integrated data analysis tool (IUGONET Data Analysis Software: UDAS) written in an Interactive Data Language (IDL). This analysis tool is a plugin software for Space Physics Environment Data Analysis Software (SPEDAS) to analyze and visualize various kinds of ground-based and satellite observation data. In the IUGONET Type-A, users can easily learn characteristics of observation data through the quick look images/plots and how to use several basic commands to visualize the data. Recently, we developed a UDAS EGG (UDAS Easy Guide to Generate your load routines) to provide users with the templates for IDL procedures that can load their own data in CSV and CDF format into SPEDAS/IDL. In order to enhance an international use of these IUGONET products and to promote an interdisciplinary study of coupling processes on the sun-earth system, we have held tutorial seminars and workshops several times in Japan and foreign countries (India, Indonesia, Nigeria, Malaysia etc.). As a result, many scientific papers [e.g., Dao et al., 2017; Batubara et al., 2018; Koushik et al., 2018] and Master/Doctor theses become published by preparing an analysis environment, and the IUGONET products effectively works as an international platform. This fact suggests that the IUGONET project is in the position enough to serve the subjects of a large research project: Study of coupling processes in the solar-terrestrial system (Master Plan 2014/2017, Load Map 2014) through a collaboration with other ground-based and satellite observation plans and international programs as already planned by Master Plan 2014/2017. Judging from the above situations, the IUGONET project has a potential possibility to extend human development and strong international cooperation to a whole equatorial region (South America, Africa) in addition to India and Indonesia in future. Therefore, it can be concluded that the IUGONET activity effectively promotes the equatorial and polar atmospheric observations, international collaboration and data science (data assimilation), which are three main subjects of Master Plan (2014/2017).
Reference:


キーワード：IUGONET、太陽地球系結合研究、国際協力、データベース、解析ツール(SPEDAS/UDAS)、赤道大気

Keywords: IUGONET, Study of coupling process in the solar-terrestrial system, International collaboration, Database, Analysis tool (SPEDAS/UDAS), Equatorial atmosphere