Vertical fine structure and time evolution of plasma irregularities in the E_s layer, observed by a high resolution Ca⁺ lidar

*Mitsumu K. Ejiri^{1,2}, Takuji Nakamura^{1,2}, Takuo T. Tsuda³, Takanori Nishiyama^{1,2}, Makoto Abo⁴, Toru Takahashi¹, Katsuhiko Tsuno⁵, Takuya Kawahara⁶, Takayo Ogawa⁵, Satoshi Wada⁵

1. National Institute of Polar Research, 2. SOKENDAI (Department of Polar Science, The Graduate University for Advanced Studies), 3. The University of Electro-Communications, 4. Tokyo Metropolitan University, 5. RIKEN, RAP, 6. Shinshu University Faculty of Engineering

The vertical fine structures and the time evolution of plasma irregularities in the sporadic $E(E_s)$ layer were observed via calcium ion (Ca⁺) density measurements using a resonance scattering lidar with a high time-height resolution (5 s and 15 m) at Tachikawa (35.7°N, 139.4°E) on December 24, 2014. The observation successfully provided clearer fine structures of plasma irregularities, such as quasi-sinusoidal variation, localized clumps, "cats-eye" structures, and twist structures, in the sporadic Ca⁺ (Ca⁺,) layers at around 100 km altitude. These fine structures suggested that the Kelvin-Helmholtz (K-H) instabilities occurred in the neutral atmosphere whose density changed temporarily or spatially. The maximum Ca⁺ density in the Ca⁺ layer was two orders of magnitude smaller than the maximum electron density estimated from the critical frequency ($f_0 E_s$) observed by the ionosonde at Kokubunji (35.7°N, 139.5°E) simultaneously. The correlation showed a strong positive correlation with a coefficient of 0.91. These results suggest that Ca⁺ contributes forming the E_s layer as well as major metallic ions Fe⁺ and Mg⁺ in the lower thermosphere. Moreover, the formation of a new Ca⁺ layer at 110 km and the upward motions of the Ca⁺_s layers at 100 km and 110 km were observed just after the sunrise time at the conjugation point and before the local sunrise. Although the presence or absence of a causal relationship with the sunrise time was not clear, a possible explanation for the formation and the upward motions of the Ca⁺_s layers was the occurrence of strong eastward winds at around 100 km, rather than the enhancement of the eastward electric field.

Keywords: resonance scattering lidar, calcium ion density, sporadic E layer, fine structure, The mesosphere and lower thermosphere region