Overview and current status of DESTINY⁺ mission

*Tomoko Arai¹, Masanori Kobayashi¹, Ko Ishibashi¹, Fumi Yoshida¹, Hiroshi Kimura¹, Takayuki Hirai¹, Hong Peng¹, Manabu Yamada¹, Hiroki Senshu¹, Koji Wada¹, Ralf Srama², Harald Kruger³, Jun-ichi Watanabe⁴, Takashi Ito⁴, Masateru Ishiguro⁵, Tomoki Nakamura⁶, Hikaru Yabuta⁷, Shogo Tachibana⁸, Takashi Mikouchi⁸, Shinsuke Abe⁹, Katsuhito Ohtsuka¹⁰, Seitaro Urakawa¹¹, Keiko Nakamura-Messenger¹², Mutsumi Komatsu¹³, Shingo Kameda¹⁴, Masato Kagitani⁶, Naru Hirata¹⁵ , Hirohide Demura¹⁵, Sho Sasaki¹⁶, Takahiro Hiroi¹⁷, Goro Komatsu¹⁸, Hidehiro Kaneda¹⁹, Takaya Inamori¹⁹, Takaya Okamoto²⁰, Toshifumi Yanagisawa²⁰, Makoto Yoshikawa²⁰, Hajime Yano²⁰, Tatsuaki Okada²⁰, Takahiro Iwata²⁰, Takafumi Ootsubo²⁰, Yasuhiro Kawakatsu²⁰, Hiroyuki Toyota ²⁰, Kazutaka Nishiyama²⁰, Takeshi Takashima²⁰

1. Planetary Exploration Research Center, Chiba Institute of Technology, 2. University of Stuttgart, 3. Max Planck Institute, 4. National Astronomical Observatory of Japan, 5. Seoul National University, 6. Tohoku University, 7. Hiroshima University, 8. The University of Tokyo, 9. Nihon University, 10. Tokyo Meteor Network, 11. Japan Spaceguard Association, 12. NASA, 13. The Graduate University for Advanced Studies, 14. Rikkyo University, 15. Aizu University, 16. Osaka University, 17. Brown University, 18. D'Annunzio University, 19. Nagoya University, 20. JAXA

DESTINY⁺ (Demonstration and Experiment of Space Technology for INterplanetary voYage, Phaethon fLyby and dUst Science) was selected in 2017 as a mission for JAXA/ISAS small-class program. It is a joint mission of technology demonstration and scientific observation. It will test high performance electric propelled vehicle technology and high-speed flyby of asteroid (3200) Phaethon and possibly asteroid 2005UD, which a break-up body from Phaethon as an extended mission. Engineering challenges include an up-close encounter at a distance of 500 km from Phaethon with radio-optical hybrid navigation guidance and control, and autonomous imaging based on optical information for target tracking during a high-speed flyby of 33km/sec. The science goal is to understand the nature and origin of cosmic dust brought onto the Earth, in the context of exogenous contribution of carbon and organics for possible prebiotic seeds of the terrestrial life. Phaethon is a parent body of Geminid meteor shower, and thus a known source to periodically provide dust to the Earth, via the dust stream. The science objectives are two folded: (1) in-situ analyses of velocity, arrival direction, mass and chemical composition of interplanetary and interstellar dust particles around 1 au, the dust trail, and nearby Phaethon, and (2) flyby imaging of Phaethon to study its geology, for understanding dust ejection mechanism of active asteroid and the surface compositional variation. High-spatial-resolution images of less than 5 meter per pixel are obtained with Telescopic camera (TCAP), and VIS-NIR spectral images of less than 100 meter per pixel are taken with multiband camera (MCAP). Mass, speed, arrival direction and chemical composition for each dust particle are analyzed with dust analyzer (DDA). Here, we present an overview and the current status of DESTINY⁺ mission.

Keywords: DESTINY+, Phaethon, Flyby, Geminid meteor shower, IDP