Importance of 10Be as a key indicator of (solar) cosmic ray irradiation in the early solar system

*Hajime Hiyagon¹, Yuuki Tanimura¹, Tomoya Nakamura¹, Kohei Fukuda³, Wataru Fujiya⁴, Naoji Sugiura¹, Takanori Kagoshima², Naoto Takahata², Yuji Sano²

1. Graduate School of Science, The University of Tokyo, 2. Atmosphere and Ocean Research Institute, the University of Tokyo, 3. Department of Geoscience, University of Wisconsin-Madison, 4. College of Science, Ibaraki University

Beryllium-10, which decays to ¹⁰B with a half-life of 1.4 Myr, is produced mainly by spallation reactions of solar system materials induced by solar or galactic cosmic rays, but not by thermonuclear reactions in stars. Possible existence of ¹⁰Be in the early solar system materials, therefore, has significant importance in considering irradiation processes near the early Sun or in the molecular cloud [1].

Excesses in ¹⁰B correlated with Be/B ratios in a number of CAIs from CV chondrites [2-9] suggest the presence of live ¹⁰Be at the time of CAI formation. The inferred initial ¹⁰Be/⁹Be ratios are mostly within the range of (0.5-1) x 10⁻³, though the data are restricted to coarse-grained CAIs from CV chondrites. Recent studies including small CAIs from CH/CB chondrites [10-12] show that the initial ¹⁰Be/⁹Be ratios may be much higher and more variable (from ~10⁻⁴ to ~10⁻²), suggesting that the origin of ¹⁰Be in CAIs is spallation reactions induced by solar cosmic rays.

Data for chondrules are scarce. Sugiura (2001) [13] analyzed anorthite in chondrules from the Y82094 (ungrouped C3.2) chondrite and found a possible correlation between ¹⁰B excesses and Be/B ratios, but the results are not conclusive due to relatively large errors. We further conducted Be-B isotope analyses for chondrules in Y82094 chondrite using NanoSIMS at the Atmosphere and Ocean Research Institute, The University of Tokyo [14]. Resolvable excesses in ¹⁰B are found in some of the Y82094 chondrules, but ¹⁰Be was probably not alive at the time of the chondrule formation. Some carriers of excess ¹⁰B are required in the precursor materials of these chondrules.

Here we review recent progress in Be-B isotopic studies and discuss their importance in understanding the irradiation processes in the early solar system. We will also show our some new results on Be-B systematics for chondrules from Y82094 (C 3.2) and NWA7936 (LL 3.15) chondrite.

References

[1] Chaussidon M. and Gounelle M. (2006) in *Meteorites and the Early Solar System II*, pp. 323-339. [2]
McKeegan K. D. et al. (2000) *Science*, 289, 1334-1337. [3] Sugiura N. et al. (2001) *Meteoritics & Planet. Sci.*, 36, 1397-1408. [4] MacPherson G. J. et al. (2002) *Geochim. Cosmochim. Acta*, 67, 3165-3179. [5]
Chaussidon M. et al. (2006) *Geochim. Cosmochim. Acta*, 70, 224-245. [6] Wielandt D. et al. (2012) *Astrophys. J. Lett.* 748, L25-L29. [7] Srinivasan G. and Chaussidon M. (2013) *Earth Planet. Sci. Lett.*, 374, 11-23. [8] Liu M. C. et al. (2009) *Geochim. Cosmochim. Acta*, 73, 5051-5079. [9] Liu M. C. et al. (2010) *Astrophys. J. Lett.*, 719, L99-L103. [10] Gounelle M. et al (2013) *Astrophys. J. Lett.*, 763, L33-L37. [11]
Fukuda et al. (2017) *80th Ann. Meeting of the Meteoritical Society* (Abstract) #6210. [12] Fukuda et al. (2019) *Astrophys. J.* (submitted). [13] Sugiura N. et al. *Lunar and Planetary Science* XXXII, Abstract #1277, 2001. [14] Hiyagon et al. (2018) *NIPR Symposium on Antarctic Meteorites* (Abstract). Keywords: Beryllium-10, early solar system, cosmic ray, irradiation, CAIs, chondrules