## Variations in initial <sup>26</sup>Al/<sup>27</sup>Al ratios among fine-grained CAIs in the reduced CV chondrites

\*Noriyuki Kawasaki<sup>1</sup>, Changkun Park<sup>2</sup>, Naoya Sakamoto<sup>1</sup>, Hisayoshi Yurimoto<sup>1,3</sup>

1. Hokkaido University, 2. KOPRI, 3. ISAS/JAXA

Ca-Al-rich inclusions (CAIs) are oldest solids formed in the Solar System [1] and composed of high-temperature condensates from a solar-composition gas [2]. Most of CAIs are thought to have contained detectable amounts of live <sup>26</sup>Al, a short-lived radionuclide with a half-life of ~0.7 Myr, at their formation [3]. Recent high-precision <sup>26</sup>Al-<sup>26</sup>Mg mineral isochron studies using secondary ion mass spectrometry (SIMS) revealed detailed distributions of initial <sup>26</sup>Al/<sup>27</sup>Al values, (<sup>26</sup>Al/<sup>27</sup>Al)<sub>o</sub>, for individual CAIs in the reduced CV chondrites [e.g., 4–9]; coarse-grained, igneous CAIs and fluffy Type A CAIs show similar variations in  $({}^{26}AI/{}^{27}AI)_0$  respectively, which range from ~5.2 to ~4.2 ×10<sup>-5</sup>. In this study, we obtained new <sup>26</sup>Al-<sup>26</sup>Mg mineral isochrons of five fine-grained, spinel-rich CAIs (FGIs) from the reduced CV chondrites Efremovka, Vigarano and TIL 07007 by in situ measurements using a SIMS instrument (CAMECA ims-1280HR installed at Hokkaido University). Since FGIs are likely to be condensates from a solar nebular gas, <sup>26</sup>Al-<sup>26</sup>Mg mineral isochrons of them enable a more systematic comparison of (<sup>26</sup>Al/<sup>27</sup> Al), between CAIs formed by condensation and by melt crystallization than has previously been achieved. The obtained  ${}^{26}\text{Al}-{}^{26}\text{Mg}$  mineral isochrons for five FGIs give  $({}^{26}\text{Al}/{}^{27}\text{Al})_0$  of (5.19 ±0.17) ×10<sup>-5</sup>, (5.00 ±  $(0.17) \times 10^{-5}$ ,  $(4.53 \pm 0.18) \times 10^{-5}$ ,  $(4.43 \pm 0.31) \times 10^{-5}$ , and  $(3.35 \pm 0.21) \times 10^{-5}$ . The  $({}^{26}\text{AI}/{}^{27}\text{AI})_0$  for two FGIs are essentially identical to the whole-rock CAI value of  $({}^{26}AI/{}^{27}AI)_0 \approx 5.2 \times 10^{-5}$  [10, 11], while those for other three FGIs are clearly lower than the whole-rock CAI value. The range of (<sup>26</sup>AI/<sup>27</sup>AI)<sub>0</sub> values for the FGIs, from (5.19 ±0.17) to (3.35 ±0.21) ×10<sup>-5</sup>, corresponds to a formation age spread of 0.44 ±0.07 Myr. These variations are slightly larger than those for igneous CAIs ranging from 5.2 to  $4.2 \times 10^{-5}$  [5, 6]. Our data imply that CAI condensation events continued for, at least, ~0.4 Myr at the very beginning of our Solar System, if <sup>26</sup>Al was distributed homogeneously in the forming region. Alternatively, the observed variations would also raise a possibility of heterogeneous distributions of <sup>26</sup>Al in the forming region, corresponding to a range over, at least,  $3.4 \times 10^{-5} < (^{26}\text{Al}/^{27}\text{Al})_0 < 5.2 \times 10^{-5}$ .

[1] Connelly et al. (2012) *Science* 338, 651–655. [2] Grossman (1972) *GCA* 86, 597–619. [3] MacPherson et al. (1995) *Meteoritics* 30, 365–386. [4] MacPherson et al. (2010) *ApJL* 711, L117–L121. [5] MacPherson et al. (2012) *EPSL* 331–332, 43–54. [6] MacPherson et al. (2017) *GCA* 201, 65–82. [7] Kawasaki et al. (2017) *GCA* 201, 83–102. [8] Kawasaki et al. (2018) *GCA* 221, 318–341. [9] Kawasaki et al. (2019) *EPSL* 511, 25–35. [10] Jacobsen et al. (2008) *EPSL* 272, 353–364. [11] Larsen et al. (2011) *ApJL* 735, L37–L43.