H$_2$ production and CO$_2$ storage during peridotite serpentinization under CO$_2$-rich hydrothermal conditions: Influence of pyroxene

*Jiajie Wang1, Noriaki Watanabe1, Atsushi Okamoto1, Kengo Nakamura1, Takeshi Komai1

1. Tohoku Univ.

Serpentinization of peridotite (mainly includes olivine and pyroxene) usually produces molecular H$_2$, which may potentially contribute to today’s always-increasing energy demands. On the other hand, peridotite also appears to be a good candidate for CO$_2$ sequestration by mineralization. Based on this, our previous research has successfully combined the strategies of H$_2$ production and CO$_2$ mineralization by olivine alteration in CO$_2$-rich hydrothermal system. However, olivine may not necessarily act as a peridotite equivalent during alteration, and the pyroxene influence is still poorly understood.

In this study, we examined the reactions in H$_2$O-olivine/pyroxene-CO$_2$ systems by performing hydrothermal experiments in 0.5 mol/L NaHCO$_3$ solutions under conditions of 300 $^\circ$C and 10 MPa. The results show that H$_2$ was produced when olivine and/or pyroxene reacted in NaHCO$_3$ solution, and the presence of pyroxene in starting material suppressed H$_2$ production from per kg of mineral. Pyroxene was converted solely to serpentine, rather than brucite and magnesite even in CO$_2$-contained solutions, which indicates CO$_2$ mineralization was only realized in olivine-contained systems. In addition, the pyroxene serpentinization process is quicker than olivine. In the experiment with olivine/pyroxene weight ratio of 3/2, all of the pyroxene was altered after 72 h reaction, whereas half of the olivine particles have remained. Based on experimental results, we propose that the presence of pyroxene in starting material will suppress the H$_2$ production and CO$_2$ storage during peridotite alteration; however, the inhibition effect will be decreased along the reaction time.

Keywords: Pyroxene, Olivine, Hydrothermal, H2 production, CO2 storage