Effect of impurity on post-post-perovskite transition of MgSiO$_3$ by first principles

* Koichiro Umemoto1

1. Earth-Life Science Institute, Tokyo Institute of Technology

Several computational studies have predicted post-post-perovskite transitions in MgSiO$_3$ at ultrahigh pressures and temperatures which can occur at deep interiors of super-Earths: MgSiO$_3$ \rightarrow Mg$_2$SiO$_4$ + MgSi$_2$O$_5$ \rightarrow Mg$_2$SiO$_4$ + SiO$_2$ \rightarrow MgO + SiO$_2$) and recombination (MgO + MgSiO$_3$ \rightarrow Mg$_2$SiO$_4$ or SiO$_2$ + MgSiO$_3$ \rightarrow MgSi$_2$O$_5$) [1-5]. As demonstrated in a very recent numerical simulation, these transitions are crucially important in modeling interiors of super-Earths up to 20 times Earth’s mass [6]. However, in the previous studies, these post-post-perovskite transitions were considered only for pure Mg-Si-O. In actual super-Earths, impurities, Fe, Al, or so forth, should exist. Here we will investigate effects of impurities on post-post-perovskite transitions: transition pressures, local atomic structures, and equation of states.

Keywords: super-Earth, post-post-perovskite transition, first principles